159 Commits

Author SHA1 Message Date
7eecbddd19 Add example flow 2025-11-28 14:29:53 +01:00
d56e422d90 Shift fields around in node parameters 2025-11-28 11:52:40 +01:00
61f911af6b Update README.md 2025-11-28 10:51:10 +00:00
9c3a32c2cb Merge pull request 'Final bug fixes and documentation' (#6) from dev-Pieter into main
Reviewed-on: #6
2025-11-21 13:48:18 +00:00
033a56a9e0 Enhance comments and documentation in Reactor classes for clarity and maintainability 2025-11-21 12:29:46 +01:00
dd70b8c890 Fix CSTR PFR distinctions 2025-11-21 11:02:40 +01:00
3d93f2a7b9 Fix minor bug 2025-11-14 14:48:39 +01:00
cc89833530 Update state handling in reactor class and optimize time iteration logic 2025-11-14 13:11:09 +01:00
f3bbf63602 Add return pump update in reactor state change 2025-11-14 12:55:34 +01:00
70af0885e3 Prepare for working with relative time 2025-11-14 12:34:52 +01:00
dbfc4a81b2 Remove unused / depreciated input handling 2025-11-14 12:33:16 +01:00
f14e2c8d8e Reformat asm constants 2025-11-13 16:52:38 +01:00
7e34b9aa71 Add real-time calculation for dx based on length and resolution inputs 2025-11-13 13:59:56 +01:00
ff814074a4 Merge pull request 'Minor bug fixes, code perfomance and clarity improvements' (#5) from dev-Pieter into main
Reviewed-on: #5
2025-11-12 09:27:38 +00:00
2b37163a8a Minor fixes 2025-11-07 16:51:48 +01:00
a106276ca6 Add additional ASM constants, add other sensor handling, fix bug in kla model 2025-11-07 11:59:24 +01:00
ffb4080f14 Refactor boundary condition handling in Reactor_PFR class for improved clarity and efficiency 2025-11-06 17:24:10 +01:00
260d04b96f Minor optimisations in code and clarification 2025-11-06 16:36:51 +01:00
9f060d2dd0 Refactor, minor changes and remove depreciated functions 2025-11-06 16:09:18 +01:00
b0dd9b6a8f Refactor ASM3 module to export ASM_CONSTANTS and update references in Reactor classes 2025-11-06 15:47:18 +01:00
5c41dc44a3 Clean up unused code 2025-11-06 15:46:43 +01:00
4578667a96 Merge pull request 'Recirculation Integration' (#4) from recirculation-integration into main
Reviewed-on: #4
2025-11-06 13:55:42 +00:00
3828e43c12 Refactor reactor node configuration to remove n_inlets and simplify inlet handling 2025-11-06 14:51:06 +01:00
e6923f2916 Refactor child registration and connection methods to handle invalid inputs and improve readability 2025-10-31 11:54:28 +01:00
4680b98418 minor variable name changes 2025-10-23 17:16:10 +02:00
eb787ec47f Minor bug fix and change in report level when encountering invalid children 2025-10-22 14:40:56 +02:00
HorriblePerson555
6de4f9ec3e Fix recirculation flow calculation to prevent negative flow rates and improve variable naming 2025-10-21 13:02:41 +02:00
HorriblePerson555
7b38c2f51a Refactor recirculation flow calculation to ensure non-negative flow rates and correct measurement position 2025-10-21 12:32:21 +02:00
HorriblePerson555
018215934e Fix recirculation flow measurement to use getCurrentValue and handle undefined values 2025-10-20 17:37:29 +02:00
HorriblePerson555
3a820df7f2 Non-functioning prototype with partial rotating machine integration 2025-10-20 16:45:53 +02:00
HorriblePerson555
670c4deacb Merge branch 'boundary-conditions' 2025-10-16 15:36:37 +02:00
HorriblePerson555
f44bac9aab Add warnings for reactor child positioning and grid sizing discrepancies 2025-10-16 15:30:51 +02:00
1dc9cd0031 Add dispersion constraint 2025-10-14 12:48:43 +02:00
2a520be33b Refactor measurement position assignment and update grid position calculation in Reactor classes to align with new generalFunctions 2025-10-10 11:27:55 +02:00
baecf2f599 Functioning code, requires improved sequencing 2025-10-02 17:39:31 +02:00
cd3a19e66f Fix boundary conditions for advection 2025-10-02 13:48:47 +02:00
3aea0e55c4 Rewrite for improved boundary condition 2025-10-01 16:50:48 +02:00
442ddc60ed Fix syntax error 2025-10-01 11:50:35 +02:00
d9511dc3c7 Implement simple BCs 2025-09-30 15:36:25 +02:00
993482f8c0 Deal with mulitple parents and set downstreamReactor for improved boundary conditions 2025-09-29 16:58:46 +02:00
5f4ebdc2af Fix reference error and improve child variable naming 2025-09-29 15:45:07 +02:00
6c79d0ef9b Use improved boundary conditions for upstream and downstream reactors 2025-09-29 15:34:54 +02:00
04306d0996 Fix measurement type string for oxygen in _updateMeasurement method 2025-09-29 09:40:17 +02:00
2bc244cae7 Refactor measurement update handling in Reactor_PFR class to include default case for measurement types 2025-09-26 16:36:09 +02:00
254f9eec5a Fix measurement event listener to use correct measurement reference 2025-09-26 16:33:00 +02:00
109fd182df Refactor measurement position handling in Reactor class 2025-09-26 14:51:18 +02:00
bf5f265a76 Update measurement handling in Reactor class and rename oxygen measurement type 2025-09-26 10:17:00 +02:00
905674ce58 Update dependencies and correct node name 2025-09-24 15:27:08 +02:00
da1cff55ba Resolve merge conflicts from migration 2025-09-22 16:40:22 +02:00
9147a3f7d0 Rename repo 2025-09-22 16:19:00 +02:00
8f64fbe4e5 Add time step configuration and input handling in advanced reactor 2025-09-22 15:17:25 +02:00
7a70f60655 Fix measurement event listener registration in Reactor class 2025-09-19 13:26:45 +02:00
223c4555b8 Fix measurement reference in child registration logic 2025-09-16 15:54:31 +02:00
972d33355e Formatting 2025-09-16 11:44:29 +02:00
94ea4fe76b Fix subclass function 2025-09-15 17:39:54 +02:00
f6b026928e Enhance measurement child registration and update measurement handling in Reactor class 2025-09-15 12:48:18 +02:00
c2cd29db56 Update generalFunctions dependency and enhance reactor child registration logic 2025-09-05 15:26:00 +02:00
0b49642668 Switch general functions to new implementation 2025-09-05 13:31:42 +02:00
a4a5266040 Update package-lock 2025-09-03 12:21:15 +02:00
1857031027 Minor fix Koch parameters 2025-08-18 16:56:59 +02:00
a8928e50cc Add Koch parameters 2025-08-18 16:43:16 +02:00
04a5b1a54f Fix COD balance 2025-08-14 11:14:14 +02:00
7a6825a80e Add flows document 2025-08-04 11:45:00 +02:00
fbbe5833b2 Temporary fix for undefined newTime value in updateState function 2025-08-04 10:59:11 +02:00
2c9db0fcea Fixed position and log settings 2025-07-31 14:48:39 +02:00
5ec9319b3f Add position field and proper logging configuration 2025-07-24 12:13:16 +02:00
31d30c6db3 Renamed advanced-reactor to advancedReactor to prevent errors due to hyphen in name 2025-07-24 11:53:23 +02:00
da90224d3f Added loggin to advanced-reactor. Currently broken for some reason? 2025-07-23 17:16:35 +02:00
ef02c47cff Add WIP oxygen measurement child relation 2025-07-22 14:36:52 +02:00
a2dbd468d5 Merge pull request 'Implemented parent-child relations for reactor node' (#15) from multi-output into main
Reviewed-on: p.vanderwilt/asm3#15
2025-07-22 11:27:06 +00:00
f81161b2d5 Process output using tick function rather than clock message 2025-07-22 12:20:29 +02:00
57aafe3e0b Minor optimisations 2025-07-21 17:28:09 +02:00
b1719376cf Rewrite reactor to source and register it properly to node object 2025-07-21 12:44:07 +02:00
73c2b654e1 Deal with clock singal 2025-07-16 16:54:30 +02:00
633a088483 Added handles for influent change emitter 2025-07-16 16:08:14 +02:00
d5db1ae0a0 Added seperate process, DB and parent outputs 2025-07-16 10:57:35 +02:00
6adf29427a Merge pull request 'Switch temperature to Measurement node and finally fix boundary conditions properly' (#14) from experimental into main
Reviewed-on: p.vanderwilt/asm3#14
2025-07-11 10:44:26 +00:00
6227bbe256 Update temperature handling in Reactor class and remove redundant setter 2025-07-11 12:27:06 +02:00
24de5a4c9f Add generalFunctions dependency and implement basic measurement child registration in nodeClass 2025-07-11 12:22:36 +02:00
6fd86f71c8 Switched around Debug point and added checks for Pe and Co_D 2025-07-09 15:37:29 +02:00
0f912b05e4 Add temperature handling 2025-07-09 10:29:54 +02:00
0efa76fa6a Reset speedUpFactor in Reactor class for simulation acceleration, disable debug 2025-07-08 15:41:41 +02:00
c566766c4d Refactor boundary condition application in Reactor_PFR class for improved clarity and efficiency 2025-07-08 15:29:55 +02:00
6bdfa07d92 Merge pull request 'Added temperature-dependent rate calculation to ASM3 model' (#12) from experimental into main
Reviewed-on: p.vanderwilt/asm3#12
2025-07-08 10:15:09 +00:00
c1e331b5f0 Add temperature theta parameters and adjust reaction rate calculations in ASM3 class 2025-07-08 11:02:39 +02:00
5c03dddb79 Refactor boundary condition handling to use adjustable parameter alpha in advanced-reactor and specificClass 2025-07-08 10:03:03 +02:00
01318a2d3b Fix spelling of "Dirichlet" in advanced-reactor.html and specificClass.js 2025-07-07 14:58:52 +02:00
01380c309f Add boundary condition input and update reactor configuration handling 2025-07-07 14:47:50 +02:00
c89d5b0024 Merge pull request 'Refactor code to align with other projects in EVOLV' (#7) from refactor into main
Reviewed-on: p.vanderwilt/asm3#7
2025-07-07 10:26:46 +00:00
302780726a Refactor Reactor class to remove debug logs and enhance setter for influent data with conditional logging 2025-07-07 12:24:15 +02:00
deb5269d1a Change file structure to align with project 2025-07-07 11:59:11 +02:00
b4ddb6b8df Enhance documentation for ASM3 class and its parameters 2025-07-07 11:08:11 +02:00
fe3add4007 Add debug assertions for state changes in Reactor classes 2025-07-04 17:42:31 +02:00
a2cfb20e2c Refactor reactor class to improve NaN handling and add utility function for NaN assertions 2025-07-04 16:28:35 +02:00
6755f2bd28 Refactor reactor class to improve NaN handling and removed magic numbers 2025-07-04 16:03:42 +02:00
4b49d10763 Fixed bug in NaN assertion 2025-07-04 15:48:05 +02:00
c6b0cab067 Refactor advanced-reactor and nodeClass for improved readability and consistency 2025-07-04 15:14:03 +02:00
3f5b0eea32 Enhance reactor class with NaN checks and refactor methods for clarity 2025-07-04 14:58:38 +02:00
09e7072d16 Refactor documentation in nodeClass and reactor_class for clarity and consistency 2025-07-04 13:52:28 +02:00
c239b71ad8 Refactor reactor constructors to accept a config object for improved clarity and maintainability 2025-07-04 13:16:49 +02:00
348307d999 Add documentation 2025-07-04 13:09:20 +02:00
530dac5c77 Refactor nodeClass to streamline configuration loading and reactor setup 2025-07-04 12:51:37 +02:00
c23818c108 Remove unnecessary node parameter _setupClass 2025-07-04 12:16:08 +02:00
fee6881f1b Refactor nodeClass for to mostly allign with the standard EVOLV structure 2025-07-04 12:06:58 +02:00
1cda956d83 Refactor Reactor class structure and include inheritance for CSTR and PFR 2025-07-04 11:42:34 +02:00
25cd728b68 Refactor reactor node registration 2025-07-04 10:44:54 +02:00
d0db1b416c Remove debug messages 2025-07-04 10:01:46 +02:00
0d12192ccc Merge pull request 'New axial dispersion model with Generalised boundary conditions' (#6) from experimental into main
Reviewed-on: p.vanderwilt/asm3#6
2025-07-03 20:30:34 +00:00
f517b7764d Remove mistake boundary condition 2025-07-03 22:28:34 +02:00
dcc8562dbf Remove depreciated variable 2025-07-02 10:37:02 +02:00
e9847607e8 Use Generalized boundary condition by Nauman and Mallikarjun 1983 2025-07-01 16:08:35 +02:00
f4824b822c Improved wieghted finite differencing 2025-07-01 13:04:32 +02:00
3cc876533c Changed the upper boundary to lower order scheme for now 2025-06-30 15:46:13 +02:00
b2d32ba9f2 Enhance makeDoperator to support higher-order central gradient schemes and improve boundary handling 2025-06-30 12:50:02 +02:00
8215c5ed9a Add checks for NaN values in Reactor_PFR calculations and update hydrolysis rate calculation to handle division by zero 2025-06-28 19:19:38 +02:00
0cc6538003 Handle division by zero in rate calculations for ASM3 2025-06-27 17:29:20 +02:00
bb74fc86c2 Refactor dispersion and boundary condition handling in Reactor_PFR 2025-06-27 16:56:37 +02:00
9f13229785 Fix boundary conditions in gradient and second derivative operators for Reactor_PFR 2025-06-24 16:38:07 +02:00
2e76f733a8 Working on fixing the Derivative operators and BCs 2025-06-24 16:23:33 +02:00
f2d94b26c5 Add dispersion setting in advanced-reactor and initialize axial dispersion to zero in Reactor_PFR 2025-06-24 13:28:45 +02:00
c279552d7e Merge pull request 'MVP for dispersion model' (#5) from experimental into main
Reviewed-on: p.vanderwilt/asm3#5
2025-06-24 10:36:09 +00:00
6b57a46aab Add typed input fields for reactor length and resolution in advanced-reactor, fixed NaN bug in reactor length 2025-06-24 12:32:11 +02:00
e5c9010093 Fixed various bugs 2025-06-24 11:20:28 +02:00
e6c1e21c16 Implement Danckwerts boundary condition in tick_fe method for Reactor_PFR 2025-06-23 17:46:55 +02:00
70531a3a59 Add support for multiple reactor types (CSTR and PFR) with corresponding properties (Dichelet BC for now) 2025-06-23 16:58:02 +02:00
62b034fb76 Added speed-up factor 2025-06-19 20:55:42 +02:00
3d3304f23a Merge pull request 'Fix outflow' (#4) from experimental into main
Reviewed-on: p.vanderwilt/asm3#4
2025-06-18 22:24:22 +00:00
8d270c37c3 Merge branch 'main' into experimental 2025-06-18 22:24:02 +00:00
85df04e215 Fix major bug in calculation of dC_out in tick_fe method to account for outflow 2025-06-19 00:16:54 +02:00
5bd094f4a6 Prevent negative values in reactor state 2025-06-18 12:34:19 +02:00
288cf905d1 Close volume balance and minor fixes 2025-06-18 10:25:40 +02:00
c2caa7fb46 Merge pull request 'Implemented recirculation pump and settling tank' (#3) from experimental into main
Reviewed-on: p.vanderwilt/asm3#3
2025-06-17 11:03:43 +00:00
167014a24b Merge branch 'main' into experimental 2025-06-17 11:03:31 +00:00
0469f678c5 Add settling basin node, fixed issue with object assignment 2025-06-17 13:00:18 +02:00
1da7a9f602 Add optional kLa input and calculation to advanced-reactor node 2025-06-17 11:13:38 +02:00
c8c588600c Rixed multiplying message bug. 2025-06-16 17:52:31 +02:00
3ba98d2362 Bug fix for now. Need to figure out how clock pulse will work. 2025-06-16 17:08:33 +02:00
5281696a21 Add recirculation pump node with input handling and flow management 2025-06-16 16:53:07 +02:00
d0f8ada144 Add number of inlets input handling to advanced-reactor node 2025-06-16 14:01:19 +02:00
c5f6dcecae Merge pull request 'Implemented node configuration and Effluent output' (#2) from experimental into main
Reviewed-on: p.vanderwilt/asm3#2
2025-06-13 13:37:14 +00:00
ded9c55dc4 Merge branch 'main' into experimental 2025-06-13 13:37:02 +00:00
5b7f7a3cef Add effluent output handling 2025-06-13 15:31:31 +02:00
d71698d94e Refactor advanced-reactor node to improve input handling and initialize reactor properties 2025-06-13 15:10:57 +02:00
05d33b7f39 Add fluid volume and initial component inputs to advanced-reactor node edit dialogue 2025-06-13 12:56:30 +02:00
bf203c5219 Merge pull request 'Absolute MVP with hardcoded config and output via terminal' (#1) from experimental into main
Reviewed-on: p.vanderwilt/asm3#1
2025-06-12 15:01:27 +00:00
91482c564d Fixed bugs and hard coded config for now. 2025-06-12 16:56:28 +02:00
2182bed343 Fixed node not showing up in pallete. 2025-06-12 12:52:32 +02:00
49334f59e9 Add advanced-reactor node-red implementation and update package.json references 2025-06-12 11:55:17 +02:00
b210a71657 Fix structure and improve comments in ASM3 and Reactor_CSTR classes 2025-06-11 17:18:27 +02:00
603a1d2283 Expand reactor class to build a simple CSTR model. Moved some functionality from asm3_class to reactor. 2025-06-11 16:24:27 +02:00
341af6db4d Refactor ASM3 constructor to remove state parameter and update compute_dC method to use state directly; add Reactor_CSTR class for reactor simulation with forward Euler method 2025-06-11 15:17:09 +02:00
333efcda52 Add optional state parameter to compute_rates, improve comments, and implement compute_dC method 2025-06-05 17:23:51 +02:00
f9bd4279aa Add project files including package.json, package-lock.json, .gitignore 2025-06-05 16:57:31 +02:00
6261ae9c47 Finish stoichiometric matrix calculations and include missing kinetic parameter in compute_rates 2025-06-05 16:31:28 +02:00
c5a9a2e610 Implemented first five stoichiometric equations 2025-06-05 14:52:23 +02:00
c2122e9537 Implemented rates in rates function 2025-06-04 17:28:52 +02:00
6ae7b5bf53 Finished parameter objects 2025-06-04 15:19:17 +02:00
087acf8395 added initial file (unfinised) Add ASM3 class with
kinetic parameters and rate computation method
2025-06-04 14:24:12 +02:00
558a9fdbab Initial commit 2025-06-04 12:09:32 +00:00
11 changed files with 2399 additions and 15 deletions

136
.gitignore vendored Normal file
View File

@@ -0,0 +1,136 @@
# Logs
logs
*.log
npm-debug.log*
yarn-debug.log*
yarn-error.log*
lerna-debug.log*
.pnpm-debug.log*
# Diagnostic reports (https://nodejs.org/api/report.html)
report.[0-9]*.[0-9]*.[0-9]*.[0-9]*.json
# Runtime data
pids
*.pid
*.seed
*.pid.lock
# Directory for instrumented libs generated by jscoverage/JSCover
lib-cov
# Coverage directory used by tools like istanbul
coverage
*.lcov
# nyc test coverage
.nyc_output
# Grunt intermediate storage (https://gruntjs.com/creating-plugins#storing-task-files)
.grunt
# Bower dependency directory (https://bower.io/)
bower_components
# node-waf configuration
.lock-wscript
# Compiled binary addons (https://nodejs.org/api/addons.html)
build/Release
# Dependency directories
node_modules/
jspm_packages/
# Snowpack dependency directory (https://snowpack.dev/)
web_modules/
# TypeScript cache
*.tsbuildinfo
# Optional npm cache directory
.npm
# Optional eslint cache
.eslintcache
# Optional stylelint cache
.stylelintcache
# Microbundle cache
.rpt2_cache/
.rts2_cache_cjs/
.rts2_cache_es/
.rts2_cache_umd/
# Optional REPL history
.node_repl_history
# Output of 'npm pack'
*.tgz
# Yarn Integrity file
.yarn-integrity
# dotenv environment variable files
.env
.env.development.local
.env.test.local
.env.production.local
.env.local
# parcel-bundler cache (https://parceljs.org/)
.cache
.parcel-cache
# Next.js build output
.next
out
# Nuxt.js build / generate output
.nuxt
dist
# Gatsby files
.cache/
# Comment in the public line in if your project uses Gatsby and not Next.js
# https://nextjs.org/blog/next-9-1#public-directory-support
# public
# vuepress build output
.vuepress/dist
# vuepress v2.x temp and cache directory
.temp
.cache
# vitepress build output
**/.vitepress/dist
# vitepress cache directory
**/.vitepress/cache
# Docusaurus cache and generated files
.docusaurus
# Serverless directories
.serverless/
# FuseBox cache
.fusebox/
# DynamoDB Local files
.dynamodb/
# TernJS port file
.tern-port
# Stores VSCode versions used for testing VSCode extensions
.vscode-test
# yarn v2
.yarn/cache
.yarn/unplugged
.yarn/build-state.yml
.yarn/install-state.gz
.pnp.*

View File

@@ -1,16 +1,20 @@
# reactor # Reactor: Advanced Hydraulic Tank & Biological Process Simulator
Reactor: Advanced Hydraulic Tank & Biological Process Simulator A comprehensive reactor class for wastewater treatment simulation featuring non-ideal plug flow hydraulics and ASM3 biological modeling.
A comprehensive reactor class for wastewater treatment simulation featuring plug flow hydraulics, ASM1-ASM3 biological modeling, and multi-sectional concentration tracking. Implements hydraulic retention time calculations, dispersion modeling, and real-time biological reaction kinetics for accurate process simulation. ## How to use this Node
### Set Node Properties
Key Features: - Set reactor type: Continuously Stirred Tank Reactor (CSTR) or Plug Flow Reactor (PFR)
- Configure reactor sizing: Set reactor volume [ $m^3$ ] and (for PFRs) set the reactor length [ $m$ ]
Plug Flow Hydraulics: Multi-section reactor with configurable sectioning factor and dispersion modeling - (For PFRs) set reactor spatial resolution: A value of 10 or 20 is good. A higher resolution means more accurate simulation, at higher computational expense. Note that connected reactors must have similar Δx values.
ASM1 Integration: Complete biological nutrient removal modeling with 13 state variables (COD, nitrogen, phosphorus) - Set initial state of reactor: set the intial concentrations of all relevant reaction species.
Dynamic Volume Control: Automatic section management with overflow handling and retention time calculations - (Optional) set $k_L a$ to calculate OTR internally, rather than providing it explicitly, using simple mass transfer model.
Oxygen Transfer: Saturation-limited O2 transfer with Fick's law slowdown effects and solubility curves
Real-time Kinetics: Continuous biological reaction rate calculations with configurable time acceleration ### Accepted Node inputs
Weighted Averaging: Volume-based concentration mixing for accurate mass balance calculations - \{ topic: clock, payload: \<timestamp [ $ms$ ]\> \} - **required** clock signal to make reactor update state.
Child Registration: Integration with diffuser systems and upstream/downstream reactor networks - \{ topic: Fluent, payload: \{ F: \<flow rate [ $m^3 d^{-1}$ ]\>, C: \<array with concentrations\> \} \} - sets inflow composition and flow rate.
Supports complex biological treatment train modeling with temperature compensation, sludge calculations, and comprehensive process monitoring for wastewater treatment plant optimization and regulatory compliance. - \{ topic: Dispersion, payload: \<dispersion coefficient in [ $m d^{-2}$ ]\> \} - sets PFR dispersion coefficient.
- \{ topic: OTR, payload: \<oxygen transfer rate [ $ g d^{-1} m^{-3}$ ]\> \} - sets current oxygen transfer rate.
## Troubleshooting
Check for possible numerical warnings. These tell you which simulation parameters to change. If solutions appear to be oscillate, try reducing the time step. If solutions appear to be too dispersive, try increasing the reactor resolution.

View File

@@ -0,0 +1,838 @@
[
{
"id": "a6b85e226d144df1",
"type": "tab",
"label": "Flow 3",
"disabled": false,
"info": "",
"env": []
},
{
"id": "a94c85d65c71b66a",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "Influx composition 1",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
},
{
"p": "timestamp",
"v": "",
"vt": "date"
}
],
"repeat": "864",
"crontab": "",
"once": true,
"onceDelay": "5",
"topic": "Fluent",
"payload": "{\"inlet\":0,\"F\":6600,\"C\":[0,30,100,16,0,0,5,25,75,30,0,0,125]}",
"payloadType": "json",
"x": 260,
"y": 240,
"wires": [
[
"b726c5be41c24dcb"
]
]
},
{
"id": "0ebfbbf57bba79f1",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "timestamp",
"v": "",
"vt": "date"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "1",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "clock",
"x": 300,
"y": 280,
"wires": [
[
"b726c5be41c24dcb"
]
]
},
{
"id": "cd0e4a78d1a59a6e",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "Dispersion",
"payload": "100",
"payloadType": "num",
"x": 260,
"y": 320,
"wires": [
[
"b726c5be41c24dcb",
"b0819ff9a4010227"
]
]
},
{
"id": "b726c5be41c24dcb",
"type": "reactor",
"z": "a6b85e226d144df1",
"name": "Anoxic 1",
"reactor_type": "PFR",
"volume": "730",
"length": "10",
"resolution_L": "20",
"kla": "",
"S_O_init": 0,
"S_I_init": 30,
"S_S_init": 100,
"S_NH_init": 16,
"S_N2_init": 0,
"S_NO_init": 0,
"S_HCO_init": 5,
"X_I_init": 25,
"X_S_init": 75,
"X_H_init": 30,
"X_STO_init": 0,
"X_A_init": "30",
"X_TS_init": "132",
"timeStep": "2",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "upstream",
"x": 540,
"y": 240,
"wires": [
[
"057ab2dcd4739aef"
],
[],
[
"b0819ff9a4010227",
"214aff7330e81d3f",
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "b0819ff9a4010227",
"type": "reactor",
"z": "a6b85e226d144df1",
"name": "Aerobic 1",
"reactor_type": "PFR",
"volume": "1460",
"length": "20",
"resolution_L": "40",
"kla": "2400",
"S_O_init": 0,
"S_I_init": 30,
"S_S_init": 100,
"S_NH_init": 16,
"S_N2_init": 0,
"S_NO_init": 0,
"S_HCO_init": 5,
"X_I_init": 25,
"X_S_init": 75,
"X_H_init": "500",
"X_STO_init": 0,
"X_A_init": "30",
"X_TS_init": "132",
"timeStep": "2",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "upstream",
"x": 940,
"y": 240,
"wires": [
[
"e0049d66fefeb3e6"
],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "214aff7330e81d3f",
"type": "rotatingMachine",
"z": "a6b85e226d144df1",
"speed": 1,
"startup": 0,
"warmup": 0,
"shutdown": 0,
"cooldown": 0,
"machineCurve": {},
"flowNumber": "1",
"uuid": "",
"supplier": "Hidrostal",
"category": "Pumps",
"assetType": "Centrifugal",
"model": "hidrostal-H05K-S03R",
"unit": "l/s",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "downstream",
"positionIcon": "→",
"hasDistance": false,
"distance": "",
"x": 740,
"y": 340,
"wires": [
[],
[],
[
"b0819ff9a4010227"
]
]
},
{
"id": "0be74d5c77febec1",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 900,
"o_max": 1200,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Flow",
"model": "VegaFlow 10",
"unit": "m³/h",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 600,
"y": 460,
"wires": [
[],
[],
[
"214aff7330e81d3f"
]
]
},
{
"id": "668f41a05698f21b",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "execSequence",
"payload": "{\"source\":\"parent\",\"action\":\"execSequence\",\"parameter\":\"startup\"}",
"payloadType": "json",
"x": 330,
"y": 400,
"wires": [
[
"214aff7330e81d3f",
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "47120bc82aa7bf49",
"type": "settler",
"z": "a6b85e226d144df1",
"name": "",
"model": "mb-model",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "atEquipment",
"x": 1100,
"y": 400,
"wires": [
[
"b1af49d1d0eb6783",
"6baffb7954cf0cce"
],
[],
[]
]
},
{
"id": "2ec38c4ae9aa6e7e",
"type": "rotatingMachine",
"z": "a6b85e226d144df1",
"speed": 1,
"startup": 0,
"warmup": 0,
"shutdown": 0,
"cooldown": 0,
"machineCurve": {},
"flowNumber": "2",
"uuid": "",
"supplier": "Hidrostal",
"category": "Pumps",
"assetType": "Centrifugal",
"model": "hidrostal-H05K-S03R",
"unit": "l/s",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "downstream",
"positionIcon": "→",
"hasDistance": false,
"distance": "",
"x": 860,
"y": 460,
"wires": [
[],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "21eff612371519c5",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 500,
"o_max": 660,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Flow",
"model": "VegaFlow 10",
"unit": "m³/h",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 720,
"y": 580,
"wires": [
[],
[],
[
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "057ab2dcd4739aef",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\") {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO},\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 720,
"y": 180,
"wires": [
[
"02a932317c76721e"
]
]
},
{
"id": "02a932317c76721e",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "ae38454098a37db0",
"name": "Anoxic reactor",
"label": "Anoxic reactor",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 920,
"y": 180,
"wires": [
[]
]
},
{
"id": "e0049d66fefeb3e6",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\") {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO},\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1140,
"y": 220,
"wires": [
[
"70eeb4c8caa2db77"
]
]
},
{
"id": "70eeb4c8caa2db77",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "ae38454098a37db0",
"name": "Aerobic reactor",
"label": "Aerobic reactor / recirculation",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1340,
"y": 220,
"wires": [
[]
]
},
{
"id": "b1af49d1d0eb6783",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\" || msg.payload.inlet == 0) {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1320,
"y": 380,
"wires": [
[
"0a3ffa69046a4844"
]
]
},
{
"id": "0a3ffa69046a4844",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "de8b029d69f26c0e",
"name": "Sludge composition",
"label": "Sludge composition",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1530,
"y": 380,
"wires": [
[]
]
},
{
"id": "272b4b0050479d13",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 3200,
"o_max": 4000,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Quantity (TSS)",
"model": "VegaSolidsProbe",
"unit": "g/m³",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 930,
"y": 580,
"wires": [
[],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "6baffb7954cf0cce",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\" || msg.payload.inlet == 1 || msg.payload.inlet == 2) {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1320,
"y": 420,
"wires": [
[
"df288814a2a9a2b1"
]
]
},
{
"id": "df288814a2a9a2b1",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "de8b029d69f26c0e",
"name": "Effluent",
"label": "Effluent",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1520,
"y": 420,
"wires": [
[]
]
},
{
"id": "ae38454098a37db0",
"type": "ui-group",
"name": "Group 3",
"page": "ca564642bfc5606c",
"width": 6,
"height": 1,
"order": -1,
"showTitle": true,
"className": "",
"visible": "true",
"disabled": "false",
"groupType": "default"
},
{
"id": "de8b029d69f26c0e",
"type": "ui-group",
"name": "Group 4",
"page": "ca564642bfc5606c",
"width": 6,
"height": 1,
"order": -1,
"showTitle": true,
"className": "",
"visible": "true",
"disabled": "false",
"groupType": "default"
},
{
"id": "ca564642bfc5606c",
"type": "ui-page",
"name": "PFR",
"ui": "90eb5f47d95b4087",
"path": "/page2",
"icon": "home",
"layout": "grid",
"theme": "2c8bcaa0046b4323",
"breakpoints": [
{
"name": "Default",
"px": "0",
"cols": "3"
},
{
"name": "Tablet",
"px": "576",
"cols": "6"
},
{
"name": "Small Desktop",
"px": "768",
"cols": "9"
},
{
"name": "Desktop",
"px": "1024",
"cols": "12"
}
],
"order": -1,
"className": "",
"visible": "true",
"disabled": "false"
},
{
"id": "90eb5f47d95b4087",
"type": "ui-base",
"name": "Dashboard",
"path": "/dashboard",
"appIcon": "",
"includeClientData": true,
"acceptsClientConfig": [
"ui-notification",
"ui-control"
],
"showPathInSidebar": false,
"headerContent": "page",
"navigationStyle": "default",
"titleBarStyle": "default",
"showReconnectNotification": true,
"notificationDisplayTime": 1,
"showDisconnectNotification": true,
"allowInstall": true
},
{
"id": "2c8bcaa0046b4323",
"type": "ui-theme",
"name": "Default",
"colors": {
"surface": "#ffffff",
"primary": "#0094ce",
"bgPage": "#eeeeee",
"groupBg": "#ffffff",
"groupOutline": "#cccccc"
},
"sizes": {
"density": "default",
"pagePadding": "12px",
"groupGap": "12px",
"groupBorderRadius": "4px",
"widgetGap": "12px"
}
}
]

32
package.json Normal file
View File

@@ -0,0 +1,32 @@
{
"name": "reactor",
"version": "0.0.1",
"description": "Implementation of the asm3 model for Node-Red",
"repository": {
"type": "git",
"url": "https://gitea.centraal.wbd-rd.nl/RnD/reactor.git"
},
"keywords": [
"asm3",
"activated sludge",
"wastewater",
"biological model",
"EVOLV",
"node-red"
],
"license": "SEE LICENSE",
"author": "P.R. van der Wilt",
"main": "reactor.js",
"scripts": {
"test": "node reactor.js"
},
"node-red": {
"nodes": {
"reactor": "reactor.js"
}
},
"dependencies": {
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/RnD/generalFunctions.git",
"mathjs": "^14.5.2"
}
}

239
reactor.html Normal file
View File

@@ -0,0 +1,239 @@
<script src="/reactor/menu.js"></script>
<script type="text/javascript">
RED.nodes.registerType("reactor", {
category: "EVOLV",
color: "#c4cce0",
defaults: {
name: { value: "" },
reactor_type: { value: "CSTR", required: true },
volume: { value: 0., required: true },
length: { value: 0.},
resolution_L: { value: 0.},
kla: { value: null },
S_O_init: { value: 0., required: true },
S_I_init: { value: 30., required: true },
S_S_init: { value: 100., required: true },
S_NH_init: { value: 16., required: true },
S_N2_init: { value: 0., required: true },
S_NO_init: { value: 0., required: true },
S_HCO_init: { value: 5., required: true },
X_I_init: { value: 25., required: true },
X_S_init: { value: 75., required: true },
X_H_init: { value: 30., required: true },
X_STO_init: { value: 0., required: true },
X_A_init: { value: 0.001, required: true },
X_TS_init: { value: 125.0009, required: true },
timeStep: { value: 1, required: true },
enableLog: { value: false },
logLevel: { value: "error" },
positionVsParent: { value: "" }
},
inputs: 1,
outputs: 3,
inputLabels: ["input"],
outputLabels: ["process", "dbase", "parent"],
icon: "font-awesome/fa-recycle",
label: function() {
return this.name || "Reactor";
},
oneditprepare: function() {
// wait for the menu scripts to load
const waitForMenuData = () => {
if (window.EVOLV?.nodes?.reactor?.initEditor) {
window.EVOLV.nodes.reactor.initEditor(this);
} else {
setTimeout(waitForMenuData, 50);
}
};
waitForMenuData();
$("#node-input-volume").typedInput({
type:"num",
types:["num"]
});
$("#node-input-length").typedInput({
type:"num",
types:["num"]
});
$("#node-input-resolution_L").typedInput({
type:"num",
types:["num"]
});
$("#node-input-kla").typedInput({
type:"num",
types:["num"]
});
$(".concentrations").typedInput({
type:"num",
types:["num"]
});
$("#node-input-reactor_type").typedInput({
types: [
{
value: "CSTR",
options: [
{ value: "CSTR", label: "CSTR"},
{ value: "PFR", label: "PFR"}
]
}
]
})
$("#node-input-reactor_type").on("change", function() {
const type = $("#node-input-reactor_type").typedInput("value");
if (type === "CSTR") {
$(".PFR").hide();
} else {
$(".PFR").show();
}
});
$("#node-input-timeStep").typedInput({
type:"num",
types:["num"]
})
// Set initial visibility on dialog open
const initialType = $("#node-input-reactor_type").typedInput("value");
if (initialType === "CSTR") {
$(".PFR").hide();
} else {
$(".PFR").show();
}
const updateDx = () => {
const length = parseFloat($("#node-input-length").val()) || 0;
const resolution = parseFloat($("#node-input-resolution_L").val()) || 1;
const dx = resolution > 0 ? (length / resolution).toFixed(6) : "N/A";
$("#dx-output").text(dx + " m");
};
// Set up event listeners for real-time updates
$("#node-input-length, #node-input-resolution_L").on("change keyup", updateDx);
// Initial calculation
updateDx();
},
oneditsave: function() {
// save logger fields
if (window.EVOLV?.nodes?.reactor?.loggerMenu?.saveEditor) {
window.EVOLV.nodes.reactor.loggerMenu.saveEditor(this);
}
// save position field
if (window.EVOLV?.nodes?.measurement?.positionMenu?.saveEditor) {
window.EVOLV.nodes.rotatingMachine.positionMenu.saveEditor(this);
}
let volume = parseFloat($("#node-input-volume").typedInput("value"));
if (isNaN(volume) || volume <= 0) {
RED.notify("Fluid volume not set correctly", {type: "error"});
}
}
});
</script>
<script type="text/html" data-template-name="reactor">
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
<h2> Reactor properties </h2>
<div class="form-row">
<label for="node-input-reactor_type"><i class="fa fa-tag"></i> Reactor type</label>
<input type="text" id="node-input-reactor_type">
</div>
<div class="form-row">
<label for="node-input-volume"><i class="fa fa-tag"></i> Fluid volume [m3]</label>
<input type="text" id="node-input-volume" placeholder="m3">
</div>
<div class="form-row PFR">
<label for="node-input-length"><i class="fa fa-tag"></i> Reactor length [m]</label>
<input type="text" id="node-input-length" placeholder="m">
</div>
<h2> Simulation parameters </h2>
<div class="form-row">
<label for="node-input-timeStep"><i class="fa fa-tag"></i> Time step [s]</label>
<input type="text" id="node-input-timeStep" placeholder="s">
</div>
<div class="form-row PFR">
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Spatial resolution</label>
<input type="text" id="node-input-resolution_L" placeholder="#">
</div>
<div class="form-row PFR">
<label for="node-input-dx"><i class="fa fa-tag"></i> Δx (length / resolution) [m]</label>
<span id="dx-output" style="display: inline-block; padding: 8px; font-weight: bold;">--</span>
</div>
<h3> Internal mass transfer calculation (optional) </h3>
<div class="form-row">
<label for="node-input-kla"><i class="fa fa-tag"></i> kLa [d-1]</label>
<input type="text" id="node-input-kla" placeholder="d-1">
</div>
<h2> Dissolved components </h2>
<div class="form-row">
<label for="node-input-S_O_init"><i class="fa fa-tag"></i> Initial dissolved oxygen [g O2 m-3]</label>
<input type="text" id="node-input-S_O_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_I_init"><i class="fa fa-tag"></i> Initial soluble inert organics [g COD m-3]</label>
<input type="text" id="node-input-S_I_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_S_init"><i class="fa fa-tag"></i> Initial readily biodegrable substrates [g COD m-3]</label>
<input type="text" id="node-input-S_S_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_NH_init"><i class="fa fa-tag"></i> Initial ammonium / ammonia [g N m-3]</label>
<input type="text" id="node-input-S_NH_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_N2_init"><i class="fa fa-tag"></i> Initial dinitrogen, released by denitrification [g N m-3]</label>
<input type="text" id="node-input-S_N2_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_NO_init"><i class="fa fa-tag"></i> Initial nitrite + nitrate [g N m-3]</label>
<input type="text" id="node-input-S_NO_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_HCO_init"><i class="fa fa-tag"></i> Initial alkalinity, bicarbonate [mole HCO3- m-3]</label>
<input type="text" id="node-input-S_HCO_init" class="concentrations">
</div>
<h2> Particulate components </h2>
<div class="form-row">
<label for="node-input-X_I_init"><i class="fa fa-tag"></i> Initial inert particulate organics [g COD m-3]</label>
<input type="text" id="node-input-X_I_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-X_S_init"><i class="fa fa-tag"></i> Initial slowly biodegrable substrates [g COD m-3]</label>
<input type="text" id="node-input-X_S_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-X_H_init"><i class="fa fa-tag"></i> Initial heterotrophic biomass [g COD m-3]</label>
<input type="text" id="node-input-X_H_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-X_STO_init"><i class="fa fa-tag"></i> Initial Organics stored by heterotrophs [g COD m-3]</label>
<input type="text" id="node-input-X_STO_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-X_A_init"><i class="fa fa-tag"></i> Initial autotrophic, nitrifying biomass [g COD m-3]</label>
<input type="text" id="node-input-X_A_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-X_TS_init"><i class="fa fa-tag"></i> Initial total suspended solids [g TSS m-3]</label>
<input type="text" id="node-input-X_TS_init" class="concentrations">
</div>
<!-- Logger fields injected here -->
<div id="logger-fields-placeholder"></div>
<!-- Position fields will be injected here -->
<div id="position-fields-placeholder"></div>
</script>
<script type="text/html" data-help-name="reactor">
<p>New reactor node</p>
</script>

26
reactor.js Normal file
View File

@@ -0,0 +1,26 @@
const nameOfNode = "reactor"; // name of the node, should match file name and node type in Node-RED
const nodeClass = require('./src/nodeClass.js'); // node class
const { MenuManager } = require('generalFunctions');
module.exports = function (RED) {
// Register the node type
RED.nodes.registerType(nameOfNode, function (config) {
// Initialize the Node-RED node first
RED.nodes.createNode(this, config);
// Then create your custom class and attach it
this.nodeClass = new nodeClass(config, RED, this, nameOfNode);
});
const menuMgr = new MenuManager();
// Serve /advancedReactor/menu.js
RED.httpAdmin.get(`/${nameOfNode}/menu.js`, (req, res) => {
try {
const script = menuMgr.createEndpoint(nameOfNode, ['logger', 'position']);
res.type('application/javascript').send(script);
} catch (err) {
res.status(500).send(`// Error generating menu: ${err.message}`);
}
});
};

159
src/nodeClass.js Normal file
View File

@@ -0,0 +1,159 @@
const { Reactor_CSTR, Reactor_PFR } = require('./specificClass.js');
class nodeClass {
/**
* Node-RED node class for advanced-reactor.
* @param {object} uiConfig - Node-RED node configuration
* @param {object} RED - Node-RED runtime API
* @param {object} nodeInstance - Node-RED node instance
* @param {string} nameOfNode - Name of the node
*/
constructor(uiConfig, RED, nodeInstance, nameOfNode) {
// Preserve RED reference for HTTP endpoints if needed
this.node = nodeInstance;
this.RED = RED;
this.name = nameOfNode;
this.source = null;
this._loadConfig(uiConfig)
this._setupClass();
this._attachInputHandler();
this._registerChild();
this._startTickLoop();
this._attachCloseHandler();
}
/**
* Handle node-red input messages
*/
_attachInputHandler() {
this.node.on('input', (msg, send, done) => {
switch (msg.topic) {
case "clock":
this.source.updateState(msg.timestamp);
break;
case "Fluent":
this.source.setInfluent = msg;
break;
case "OTR":
this.source.setOTR = msg;
break;
case "Dispersion":
this.source.setDispersion = msg;
break;
case 'registerChild':
// Register this node as a parent of the child node
const childId = msg.payload;
const childObj = this.RED.nodes.getNode(childId);
this.source.childRegistrationUtils.registerChild(childObj.source, msg.positionVsParent);
break;
default:
console.log("Unknown topic: " + msg.topic);
}
if (done) {
done();
}
});
}
/**
* Parse node configuration
* @param {object} uiConfig Config set in UI in node-red
*/
_loadConfig(uiConfig) {
this.config = {
general: {
name: uiConfig.name || this.name,
id: this.node.id,
unit: null,
logging: {
enabled: uiConfig.enableLog,
logLevel: uiConfig.logLevel
}
},
functionality: {
positionVsParent: uiConfig.positionVsParent || 'atEquipment', // Default to 'atEquipment' if not specified
softwareType: "reactor" // should be set in config manager
},
reactor_type: uiConfig.reactor_type,
volume: parseFloat(uiConfig.volume),
length: parseFloat(uiConfig.length),
resolution_L: parseInt(uiConfig.resolution_L),
kla: parseFloat(uiConfig.kla),
initialState: [
parseFloat(uiConfig.S_O_init),
parseFloat(uiConfig.S_I_init),
parseFloat(uiConfig.S_S_init),
parseFloat(uiConfig.S_NH_init),
parseFloat(uiConfig.S_N2_init),
parseFloat(uiConfig.S_NO_init),
parseFloat(uiConfig.S_HCO_init),
parseFloat(uiConfig.X_I_init),
parseFloat(uiConfig.X_S_init),
parseFloat(uiConfig.X_H_init),
parseFloat(uiConfig.X_STO_init),
parseFloat(uiConfig.X_A_init),
parseFloat(uiConfig.X_TS_init)
],
timeStep: parseFloat(uiConfig.timeStep)
}
}
/**
* Register this node as a child upstream and downstream.
* Delayed to avoid Node-RED startup race conditions.
*/
_registerChild() {
setTimeout(() => {
this.node.send([
null,
null,
{ topic: 'registerChild', payload: this.node.id, positionVsParent: this.config?.functionality?.positionVsParent || 'atEquipment' }
]);
}, 100);
}
/**
* Setup reactor class based on config
*/
_setupClass() {
let new_reactor;
switch (this.config.reactor_type) {
case "CSTR":
new_reactor = new Reactor_CSTR(this.config);
break;
case "PFR":
new_reactor = new Reactor_PFR(this.config);
break;
default:
console.warn("Unknown reactor type: " + uiConfig.reactor_type);
}
this.source = new_reactor; // protect from reassignment
this.node.source = this.source;
}
_startTickLoop() {
setTimeout(() => {
this._tickInterval = setInterval(() => this._tick(), 1000);
}, 1000);
}
_tick(){
this.node.send([this.source.getEffluent, null, null]);
}
_attachCloseHandler() {
this.node.on('close', (done) => {
clearInterval(this._tickInterval);
done();
});
}
}
module.exports = nodeClass;

View File

@@ -0,0 +1,222 @@
const math = require('mathjs');
const ASM_CONSTANTS = {
S_O_INDEX: 0,
S_NH_INDEX: 3,
S_NO_INDEX: 5,
NUM_SPECIES: 13
};
const KINETIC_CONSTANTS = {
// Hydrolysis
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.5, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 10., // saturation constant S_s [g COD m-3]
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 3., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.3, // aerobic respiration rate [d-1]
b_H_NO: 0.15, // anoxic respiration rate [d-1]
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.3, // maximum specific growth rate [d-1]
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.20, // aerobic respiration rate [d-1]
b_A_NO: 0.10 // anoxic respiration rate [d-1]
};
const STOICHIOMETRIC_CONSTANTS = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
*/
class ASM3 {
constructor() {
/**
* Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = KINETIC_CONSTANTS;
/**
* Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = STOICHIOMETRIC_CONSTANTS;
/**
* Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters.
* These parameters are used to adjust reaction rates based on temperature.
* @property {Object} temp_params - Temperature theta parameters
*/
this.temp_params = {
// Hydrolysis
theta_H: 0.04,
// Heterotrophs
theta_STO: 0.07,
theta_mu_H: 0.07,
theta_b_H_O: 0.07,
theta_b_H_NO: 0.07,
theta_b_STO_O: this._compute_theta(0.1, 0.3, 10, 20),
theta_b_STO_NO: this._compute_theta(0.05, 0.15, 10, 20),
// Autotrophs
theta_mu_A: 0.105,
theta_b_A_O: 0.105,
theta_b_A_NO: 0.105
};
this.stoi_matrix = this._initialise_stoi_matrix();
}
/**
* Initialises the stoichiometric matrix for ASM3.
* @returns {Array} - The stoichiometric matrix for ASM3. (2D array)
*/
_initialise_stoi_matrix() { // initialise stoichiometric matrix
const { f_SI, f_XI, Y_STO_O, Y_STO_NO, Y_H_O, Y_H_NO, Y_A, i_CODN, i_CODNO, i_NSI, i_NSS, i_NXI, i_NXS, i_NBM, i_TSXI, i_TSXS, i_TSBM, i_TSSTO, i_cNH, i_cNO } = this.stoi_params;
const stoi_matrix = Array(12);
// S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
stoi_matrix[0] = [0., f_SI, 1.-f_SI, i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI, 0., 0., (i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI)*i_cNH, 0., -1., 0., 0., 0., -i_TSXS];
stoi_matrix[1] = [-(1.-Y_STO_O), 0, -1., i_NSS, 0., 0., i_NSS*i_cNH, 0., 0., 0., Y_STO_O, 0., Y_STO_O*i_TSSTO];
stoi_matrix[2] = [0., 0., -1., i_NSS, -(1.-Y_STO_NO)/(i_CODNO-i_CODN), (1.-Y_STO_NO)/(i_CODNO-i_CODN), i_NSS*i_cNH + (1.-Y_STO_NO)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., Y_STO_NO, 0., Y_STO_NO*i_TSSTO];
stoi_matrix[3] = [-(1.-Y_H_O)/Y_H_O, 0., 0., -i_NBM, 0., 0., -i_NBM*i_cNH, 0., 0., 1., -1./Y_H_O, 0., i_TSBM-i_TSSTO/Y_H_O];
stoi_matrix[4] = [0., 0., 0., -i_NBM, -(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), (1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), -i_NBM*i_cNH+(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN))*i_cNO, 0., 0., 1., -1./Y_H_NO, 0., i_TSBM-i_TSSTO/Y_H_NO];
stoi_matrix[5] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
stoi_matrix[6] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
stoi_matrix[7] = [-1., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., -i_TSSTO];
stoi_matrix[8] = [0., 0., 0., 0., -1./(i_CODNO-i_CODN), 1./(i_CODNO-i_CODN), i_cNO/(i_CODNO-i_CODN), 0., 0., 0., -1., 0., -i_TSSTO];
stoi_matrix[9] = [1.+i_CODNO/Y_A, 0., 0., -1./Y_A-i_NBM, 0., 1./Y_A, (-1./Y_A-i_NBM)*i_cNH+i_cNO/Y_A, 0., 0., 0., 0., 1., i_TSBM];
stoi_matrix[10] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
stoi_matrix[11] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
return stoi_matrix[0].map((col, i) => stoi_matrix.map(row => row[i])); // transpose matrix
}
/**
* Computes the Monod equation rate value for a given concentration and half-saturation constant.
* @param {number} c - Concentration of reaction species.
* @param {number} K - Half-saturation constant for the reaction species.
* @returns {number} - Monod equation rate value for the given concentration and half-saturation constant.
*/
_monod(c, K) {
return c / (K + c);
}
/**
* Computes the inverse Monod equation rate value for a given concentration and half-saturation constant. Used for inhibition.
* @param {number} c - Concentration of reaction species.
* @param {number} K - Half-saturation constant for the reaction species.
* @returns {number} - Inverse Monod equation rate value for the given concentration and half-saturation constant.
*/
_inv_monod(c, K) {
return K / (K + c);
}
/**
* Adjust the rate parameter for temperature T using simplied Arrhenius equation based on rate constant at 20 degrees Celsius and theta parameter.
* @param {number} k - Rate constant at 20 degrees Celcius.
* @param {number} theta - Theta parameter.
* @param {number} T - Temperature in Celcius.
* @returns {number} - Adjusted rate parameter at temperature T based on the Arrhenius equation.
*/
_arrhenius(k, theta, T) {
return k * Math.exp(theta*(T-20));
}
/**
* Computes the temperature theta parameter based on two rate constants and their corresponding temperatures.
* @param {number} k1 - Rate constant at temperature T1.
* @param {number} k2 - Rate constant at temperature T2.
* @param {number} T1 - Temperature T1 in Celcius.
* @param {number} T2 - Temperature T2 in Celcius.
* @returns {number} - Theta parameter.
*/
_compute_theta(k1, k2, T1, T2) {
return Math.log(k1/k2)/(T1-T2);
}
/**
* Computes the reaction rates for each process reaction based on the current state and temperature.
* @param {Array} state - State vector containing concentrations of reaction species.
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
* @returns {Array} - Reaction rates for each process reaction.
*/
compute_rates(state, T = 20) {
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
const rates = Array(12);
const [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = state;
const { k_H, K_X, k_STO, nu_NO, K_O, K_NO, K_S, K_STO, mu_H_max, K_NH, K_HCO, b_H_O, b_H_NO, b_STO_O, b_STO_NO, mu_A_max, K_A_NH, K_A_O, K_A_HCO, b_A_O, b_A_NO } = this.kin_params;
const { theta_H, theta_STO, theta_mu_H, theta_b_H_O, theta_b_H_NO, theta_b_STO_O, theta_b_STO_NO, theta_mu_A, theta_b_A_O, theta_b_A_NO } = this.temp_params;
// Hydrolysis
rates[0] = X_H == 0 ? 0 : this._arrhenius(k_H, theta_H, T) * this._monod(X_S / X_H, K_X) * X_H;
// Heterotrophs
rates[1] = this._arrhenius(k_STO, theta_STO, T) * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
rates[2] = this._arrhenius(k_STO, theta_STO, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
rates[3] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
rates[4] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
rates[5] = this._arrhenius(b_H_O, theta_b_H_O, T) * this._monod(S_O, K_O) * X_H;
rates[6] = this._arrhenius(b_H_NO, theta_b_H_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
rates[7] = this._arrhenius(b_STO_O, theta_b_STO_O, T) * this._monod(S_O, K_O) * X_H;
rates[8] = this._arrhenius(b_STO_NO, theta_b_STO_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
// Autotrophs
rates[9] = this._arrhenius(mu_A_max, theta_mu_A, T) * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
rates[10] = this._arrhenius(b_A_O, theta_b_A_O, T) * this._monod(S_O, K_O) * X_A;
rates[11] = this._arrhenius(b_A_NO, theta_b_A_NO, T) * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
return rates;
}
/**
* Computes the change in concentrations of reaction species based on the current state and temperature.
* @param {Array} state - State vector containing concentrations of reaction species.
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
* @returns {Array} - Change in reaction species concentrations.
*/
compute_dC(state, T = 20) { // compute changes in concentrations
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
return math.multiply(this.stoi_matrix, this.compute_rates(state, T));
}
}
module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };

View File

@@ -0,0 +1,222 @@
const math = require('mathjs');
const ASM_CONSTANTS = {
S_O_INDEX: 0,
S_NH_INDEX: 3,
S_NO_INDEX: 5,
NUM_SPECIES: 13
};
const KINETIC_CONSTANTS = {
// Hydrolysis
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.6, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 2., // saturation constant S_s [g COD m-3]
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 2., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.2, // aerobic respiration rate [d-1]
b_H_NO: 0.1, // anoxic respiration rate [d-1]
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.0, // maximum specific growth rate [d-1]
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.15, // aerobic respiration rate [d-1]
b_A_NO: 0.05 // anoxic respiration rate [d-1]
};
const STOICHIOMETRIC_CONSTANTS = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3).
*/
class ASM3 {
constructor() {
/**
* Kinetic parameters for ASM3 at 20 C.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = KINETIC_CONSTANTS;
/**
* Stoichiometric and composition parameters for ASM3.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = STOICHIOMETRIC_CONSTANTS;
/**
* Temperature theta parameters for ASM3.
* These parameters are used to adjust reaction rates based on temperature.
* @property {Object} temp_params - Temperature theta parameters
*/
this.temp_params = {
// Hydrolysis
theta_H: this._compute_theta(2, 3, 10, 20),
// Heterotrophs
theta_STO: this._compute_theta(2.5, 5, 10, 20),
theta_mu_H: this._compute_theta(1, 2, 10, 20),
theta_b_H_O: this._compute_theta(0.1, 0.2, 10, 20),
theta_b_H_NO: this._compute_theta(0.05, 0.1, 10, 20),
theta_b_STO_O: this._compute_theta(0.1, 0.2, 10, 20),
theta_b_STO_NO: this._compute_theta(0.05, 0.1, 10, 20),
// Autotrophs
theta_mu_A: this._compute_theta(0.35, 1, 10, 20),
theta_b_A_O: this._compute_theta(0.05, 0.15, 10, 20),
theta_b_A_NO: this._compute_theta(0.02, 0.05, 10, 20)
};
this.stoi_matrix = this._initialise_stoi_matrix();
}
/**
* Initialises the stoichiometric matrix for ASM3.
* @returns {Array} - The stoichiometric matrix for ASM3. (2D array)
*/
_initialise_stoi_matrix() { // initialise stoichiometric matrix
const { f_SI, f_XI, Y_STO_O, Y_STO_NO, Y_H_O, Y_H_NO, Y_A, i_CODN, i_CODNO, i_NSI, i_NSS, i_NXI, i_NXS, i_NBM, i_TSXI, i_TSXS, i_TSBM, i_TSSTO, i_cNH, i_cNO } = this.stoi_params;
const stoi_matrix = Array(12);
// S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
stoi_matrix[0] = [0., f_SI, 1.-f_SI, i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI, 0., 0., (i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI)*i_cNH, 0., -1., 0., 0., 0., -i_TSXS];
stoi_matrix[1] = [-(1.-Y_STO_O), 0, -1., i_NSS, 0., 0., i_NSS*i_cNH, 0., 0., 0., Y_STO_O, 0., Y_STO_O*i_TSSTO];
stoi_matrix[2] = [0., 0., -1., i_NSS, -(1.-Y_STO_NO)/(i_CODNO-i_CODN), (1.-Y_STO_NO)/(i_CODNO-i_CODN), i_NSS*i_cNH + (1.-Y_STO_NO)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., Y_STO_NO, 0., Y_STO_NO*i_TSSTO];
stoi_matrix[3] = [-(1.-Y_H_O)/Y_H_O, 0., 0., -i_NBM, 0., 0., -i_NBM*i_cNH, 0., 0., 1., -1./Y_H_O, 0., i_TSBM-i_TSSTO/Y_H_O];
stoi_matrix[4] = [0., 0., 0., -i_NBM, -(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), (1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), -i_NBM*i_cNH+(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN))*i_cNO, 0., 0., 1., -1./Y_H_NO, 0., i_TSBM-i_TSSTO/Y_H_NO];
stoi_matrix[5] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
stoi_matrix[6] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
stoi_matrix[7] = [-1., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., -i_TSSTO];
stoi_matrix[8] = [0., 0., 0., 0., -1./(i_CODNO-i_CODN), 1./(i_CODNO-i_CODN), i_cNO/(i_CODNO-i_CODN), 0., 0., 0., -1., 0., -i_TSSTO];
stoi_matrix[9] = [1.+i_CODNO/Y_A, 0., 0., -1./Y_A-i_NBM, 0., 1./Y_A, (-1./Y_A-i_NBM)*i_cNH+i_cNO/Y_A, 0., 0., 0., 0., 1., i_TSBM];
stoi_matrix[10] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
stoi_matrix[11] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
return stoi_matrix[0].map((col, i) => stoi_matrix.map(row => row[i])); // transpose matrix
}
/**
* Computes the Monod equation rate value for a given concentration and half-saturation constant.
* @param {number} c - Concentration of reaction species.
* @param {number} K - Half-saturation constant for the reaction species.
* @returns {number} - Monod equation rate value for the given concentration and half-saturation constant.
*/
_monod(c, K) {
return c / (K + c);
}
/**
* Computes the inverse Monod equation rate value for a given concentration and half-saturation constant. Used for inhibition.
* @param {number} c - Concentration of reaction species.
* @param {number} K - Half-saturation constant for the reaction species.
* @returns {number} - Inverse Monod equation rate value for the given concentration and half-saturation constant.
*/
_inv_monod(c, K) {
return K / (K + c);
}
/**
* Adjust the rate parameter for temperature T using simplied Arrhenius equation based on rate constant at 20 degrees Celsius and theta parameter.
* @param {number} k - Rate constant at 20 degrees Celcius.
* @param {number} theta - Theta parameter.
* @param {number} T - Temperature in Celcius.
* @returns {number} - Adjusted rate parameter at temperature T based on the Arrhenius equation.
*/
_arrhenius(k, theta, T) {
return k * Math.exp(theta*(T-20));
}
/**
* Computes the temperature theta parameter based on two rate constants and their corresponding temperatures.
* @param {number} k1 - Rate constant at temperature T1.
* @param {number} k2 - Rate constant at temperature T2.
* @param {number} T1 - Temperature T1 in Celcius.
* @param {number} T2 - Temperature T2 in Celcius.
* @returns {number} - Theta parameter.
*/
_compute_theta(k1, k2, T1, T2) {
return Math.log(k1/k2)/(T1-T2);
}
/**
* Computes the reaction rates for each process reaction based on the current state and temperature.
* @param {Array} state - State vector containing concentrations of reaction species.
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
* @returns {Array} - Reaction rates for each process reaction.
*/
compute_rates(state, T = 20) {
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
const rates = Array(12);
const [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = state;
const { k_H, K_X, k_STO, nu_NO, K_O, K_NO, K_S, K_STO, mu_H_max, K_NH, K_HCO, b_H_O, b_H_NO, b_STO_O, b_STO_NO, mu_A_max, K_A_NH, K_A_O, K_A_HCO, b_A_O, b_A_NO } = this.kin_params;
const { theta_H, theta_STO, theta_mu_H, theta_b_H_O, theta_b_H_NO, theta_b_STO_O, theta_b_STO_NO, theta_mu_A, theta_b_A_O, theta_b_A_NO } = this.temp_params;
// Hydrolysis
rates[0] = X_H == 0 ? 0 : this._arrhenius(k_H, theta_H, T) * this._monod(X_S / X_H, K_X) * X_H;
// Heterotrophs
rates[1] = this._arrhenius(k_STO, theta_STO, T) * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
rates[2] = this._arrhenius(k_STO, theta_STO, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
rates[3] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
rates[4] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
rates[5] = this._arrhenius(b_H_O, theta_b_H_O, T) * this._monod(S_O, K_O) * X_H;
rates[6] = this._arrhenius(b_H_NO, theta_b_H_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
rates[7] = this._arrhenius(b_STO_O, theta_b_STO_O, T) * this._monod(S_O, K_O) * X_H;
rates[8] = this._arrhenius(b_STO_NO, theta_b_STO_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
// Autotrophs
rates[9] = this._arrhenius(mu_A_max, theta_mu_A, T) * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
rates[10] = this._arrhenius(b_A_O, theta_b_A_O, T) * this._monod(S_O, K_O) * X_A;
rates[11] = this._arrhenius(b_A_NO, theta_b_A_NO, T) * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
return rates;
}
/**
* Computes the change in concentrations of reaction species based on the current state and temperature.
* @param {Array} state - State vector containing concentrations of reaction species.
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
* @returns {Array} - Change in reaction species concentrations.
*/
compute_dC(state, T = 20) { // compute changes in concentrations
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
return math.multiply(this.stoi_matrix, this.compute_rates(state, T));
}
}
module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };

488
src/specificClass.js Normal file
View File

@@ -0,0 +1,488 @@
const { ASM3, ASM_CONSTANTS } = require('./reaction_modules/asm3_class.js');
const { create, all, isArray } = require('mathjs');
const { assertNoNaN } = require('./utils.js');
const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions');
const EventEmitter = require('events');
const mathConfig = {
matrix: 'Array' // use Array as the matrix type
};
const math = create(all, mathConfig);
const BC_PADDING = 2; // Boundary Condition padding for open boundaries in extendedState variable
const DEBUG = false;
const DAY2MS = 1000 * 60 * 60 * 24; // convert between days and milliseconds
class Reactor {
/**
* Reactor base class.
* @param {object} config - Configuration object containing reactor parameters.
*/
constructor(config) {
this.config = config;
// EVOLV stuff
this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name);
this.emitter = new EventEmitter();
this.measurements = new MeasurementContainer();
this.childRegistrationUtils = new childRegistrationUtils(this); // child registration utility
// placeholder variables for children and parents
this.upstreamReactor = null;
this.downstreamReactor = null;
this.returnPump = null;
this.asm = new ASM3(); // Reaction model
this.volume = config.volume; // fluid volume reactor [m3]
this.Fs = [0]; // fluid debits per inlet [m3 d-1]
this.Cs_in = [Array(ASM_CONSTANTS.NUM_SPECIES).fill(0)]; // composition influents
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1 m-3]
this.temperature = 20; // temperature [C]
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
this.currentTime = null; // milliseconds since epoch [ms]
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step in seconds, converted to days.
this.speedUpFactor = 1; // speed up factor for simulation, 60 means 1 minute per simulated second
}
/**
* Setter for influent data.
* @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
*/
set setInfluent(input) {
const i_in = input.payload.inlet;
if (this.Fs.length <= i_in) {
this.logger.debug(`Adding new inlet index ${i_in}.`);
this.Fs.push(0);
this.Cs_in.push(Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
this.setInfluent = input;
}
this.Fs[i_in] = input.payload.F;
this.Cs_in[i_in] = input.payload.C;
}
/**
* Setter for OTR (Oxygen Transfer Rate).
* @param {object} input - Input object (msg) containing payload with OTR value [g O2 d-1 m-3].
*/
set setOTR(input) {
this.OTR = input.payload;
}
/**
* Getter for effluent data.
* @returns {object} Effluent data object (msg).
*/
get getEffluent() {
const Cs = isArray(this.state.at(-1)) ? this.state.at(-1) : this.state;
const effluent = [{ topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: Cs }, timestamp: this.currentTime }];
if (this.returnPump) {
const recirculationFlow = this.returnPump.measurements.type("flow").variant("measured").position("atEquipment").getCurrentValue();
// constrain flow to prevent negatives
const F_main = Math.max(effluent[0].payload.F - recirculationFlow, 0);
const F_sidestream = effluent[0].payload.F < recirculationFlow ? effluent[0].payload.F : recirculationFlow;
effluent[0].payload.F = F_main;
effluent.push({ topic: "Fluent", payload: { inlet: 1, F: F_sidestream, C: Cs }, timestamp: this.currentTime });
}
return effluent;
}
/**
* Calculate the oxygen transfer rate (OTR) based on the dissolved oxygen concentration and temperature.
* @param {number} S_O - Dissolved oxygen concentration [g O2 m-3].
* @param {number} T - Temperature in Celsius, default to 20 C.
* @returns {number} - Calculated OTR [g O2 d-1 m-3].
*/
_calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
const S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
return this.kla * (S_O_sat - S_O);
}
/**
* Clip values in an array to zero.
* @param {Array} arr - Array of values to clip.
* @returns {Array} - New array with values clipped to zero.
*/
_arrayClip2Zero(arr) {
if (Array.isArray(arr)) {
return arr.map(x => this._arrayClip2Zero(x));
} else {
return arr < 0 ? 0 : arr;
}
}
/**
* Register child function required for child registration.
* @param {object} child
* @param {string} softwareType
*/
registerChild(child, softwareType) {
if(!child) {
this.logger.error(`Invalid ${softwareType} child provided.`);
return;
}
switch (softwareType) {
case "measurement":
this.logger.debug(`Registering measurement child...`);
this._connectMeasurement(child);
break;
case "reactor":
this.logger.debug(`Registering reactor child...`);
this._connectReactor(child);
break;
case "machine":
this.logger.debug(`Registering machine child...`);
this._connectMachine(child);
break;
default:
this.logger.error(`Unrecognized softwareType: ${softwareType}`);
}
}
_connectMeasurement(measurementChild) {
const position = measurementChild.config.functionality.positionVsParent;
const measurementType = measurementChild.config.asset.type;
const eventName = `${measurementType}.measured.${position}`;
// Register event listener for measurement updates
measurementChild.measurements.emitter.on(eventName, (eventData) => {
this.logger.debug(`${position} ${measurementType} from ${eventData.childName}: ${eventData.value} ${eventData.unit}`);
// Store directly in parent's measurement container
this.measurements
.type(measurementType)
.variant("measured")
.position(position)
.value(eventData.value, eventData.timestamp, eventData.unit);
this._updateMeasurement(measurementType, eventData.value, position, eventData);
});
}
_connectReactor(reactorChild) {
if (reactorChild.config.functionality.positionVsParent != "upstream") {
this.logger.warn("Reactor children of other reactors should always be upstream!");
}
// set upstream and downstream reactor variable in current and child nodes respectively for easy access
this.upstreamReactor = reactorChild;
reactorChild.downstreamReactor = this;
reactorChild.emitter.on("stateChange", (eventData) => { // Triggers state update in downstream reactor.
this.logger.debug(`State change of upstream reactor detected.`);
this.updateState(eventData);
});
}
_connectMachine(machineChild) {
if (machineChild.config.functionality.positionVsParent == "downstream") {
machineChild.upstreamSource = this;
this.returnPump = machineChild;
}
}
_updateMeasurement(measurementType, value, position, context) {
this.logger.debug(`---------------------- updating ${measurementType} ------------------ `);
switch (measurementType) {
case "temperature":
if (position == "atEquipment") {
this.temperature = value;
}
break;
default:
this.logger.error(`Type '${measurementType}' not recognized for measured update.`);
return;
}
}
/**
* Update the reactor state based on the new time.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
updateState(newTime) {
if (!this.currentTime) { // initialise currentTime variable
this.currentTime = newTime;
return;
}
if (this.upstreamReactor) { // grab main effluent upstream reactor
this.setInfluent = this.upstreamReactor.getEffluent[0];
}
const n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*DAY2MS));
if (n_iter == 0) { // no update required, change in currentTime smaller than time step
return;
}
let n = 0;
while (n < n_iter) {
this.tick(this.timeStep);
n += 1;
}
this.currentTime += n_iter * this.timeStep * DAY2MS / this.speedUpFactor;
this.emitter.emit("stateChange", this.currentTime); // update downstream reactors
if (this.returnPump) { // update recirculation pump state
this.returnPump.updateSourceSink();
}
}
}
class Reactor_CSTR extends Reactor {
/**
* Reactor_CSTR class for Continuous Stirred Tank Reactor.
* @param {object} config - Configuration object containing reactor parameters.
*/
constructor(config) {
super(config);
this.state = config.initialState;
}
_updateMeasurement(measurementType, value, position, context) {
switch(measurementType) {
case "quantity (oxygen)":
this.state[ASM_CONSTANTS.S_O_INDEX] = value;
break;
case "quantity (ammonium)":
this.state[ASM_CONSTANTS.S_NH_INDEX] = value;
break;
case "quantity (nox)":
this.state[ASM_CONSTANTS.S_NO_INDEX] = value;
break;
default:
super._updateMeasurement(measurementType, value, position, context);
}
}
/**
* Tick the reactor state using the forward Euler method.
* @param {number} time_step - Time step for the simulation [d].
* @returns {Array} - New reactor state.
*/
tick(time_step) { // tick reactor state using forward Euler method
const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0];
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
const reaction = this.asm.compute_dC(this.state, this.temperature);
const transfer = Array(ASM_CONSTANTS.NUM_SPECIES).fill(0.0);
transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[ASM_CONSTANTS.S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
if(DEBUG){
assertNoNaN(dC_total, "change in state");
assertNoNaN(this.state, "new state");
}
return this.state;
}
}
class Reactor_PFR extends Reactor {
/**
* Reactor_PFR class for Plug Flow Reactor.
* @param {object} config - Configuration object containing reactor parameters.
*/
constructor(config) {
super(config);
this.length = config.length; // reactor length [m]
this.n_x = config.resolution_L; // number of slices
this.d_x = this.length / this.n_x;
this.A = this.volume / this.length; // crosssectional area [m2]
this.state = Array.from(Array(this.n_x), () => config.initialState.slice());
this.extendedState = Array.from(Array(this.n_x + 2*BC_PADDING), () => new Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
// initialise extended state
this.state.forEach((row, i) => this.extendedState[i+BC_PADDING] = row);
this.D = 0.0; // axial dispersion [m2 d-1]
this.D_op = this._makeDoperator();
assertNoNaN(this.D_op, "Derivative operator");
this.D2_op = this._makeD2operator();
assertNoNaN(this.D2_op, "Second derivative operator");
}
/**
* Setter for axial dispersion.
* @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1].
*/
set setDispersion(input) {
this.D = this._constrainDispersion(input.payload);
}
_connectReactor(reactorChild) {
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
}
super._connectReactor(reactorChild);
}
/**
* Update the reactor state based on the new time. Performs checks specific to PFR.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
updateState(newTime) {
super.updateState(newTime);
this.D = this._constrainDispersion(this.D); // constrains D to minimum dispersion, so that local Péclet number is always above 2
const Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
(Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
if(DEBUG) {
console.log("Inlet state max " + math.max(this.state[0]))
console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A));
console.log("Pe local " + Pe_local);
console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x));
console.log("Co D " + Co_D);
}
}
/**
* Tick the reactor state using explicit finite difference method.
* @param {number} time_step - Time step for the simulation [d].
* @returns {Array} - New reactor state.
*/
tick(time_step) {
this._applyBoundaryConditions();
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.extendedState);
const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.extendedState);
const reaction = this.extendedState.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
const transfer = Array.from(Array(this.n_x+2*BC_PADDING), () => new Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
}
} else {
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this._calcOTR(this.extendedState[i][ASM_CONSTANTS.S_O_INDEX], this.temperature);
}
}
const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer).slice(BC_PADDING, this.n_x+BC_PADDING), time_step);
const stateNew = math.add(this.state, dC_total);
if (DEBUG) {
assertNoNaN(dispersion, "dispersion");
assertNoNaN(advection, "advection");
assertNoNaN(reaction, "reaction");
assertNoNaN(dC_total, "change in state");
assertNoNaN(stateNew, "new state post BC");
}
this.state = this._arrayClip2Zero(stateNew);
this.state.forEach((row, i) => this.extendedState[i+BC_PADDING] = row);
return stateNew;
}
_updateMeasurement(measurementType, value, position, context) {
const grid_pos = Math.round(context.distance / this.config.length * this.n_x);
// naive approach for reconciling measurements and simulation
// could benefit from Kalman filter?
switch(measurementType) {
case "quantity (oxygen)":
this.state[grid_pos][ASM_CONSTANTS.S_O_INDEX] = value;
break;
case "quantity (ammonium)":
this.state[grid_pos][ASM_CONSTANTS.S_NH_INDEX] = value;
break;
case "quantity (nox)":
this.state[grid_pos][ASM_CONSTANTS.S_NO_INDEX] = value;
break;
default:
super._updateMeasurement(measurementType, value, position, context);
}
}
/**
* Apply boundary conditions to the reactor state.
* for inlet, apply generalised Danckwerts BC, if there is not flow, apply Neumann BC with no flux
* for outlet, apply regular Danckwerts BC (Neumann BC with no flux)
*/
_applyBoundaryConditions() {
// Upstream BC
if (this.upstreamReactor && this.upstreamReactor.config.reactor_type == "PFR") {
// Open boundary, if upstream reactor is PFR
this.extendedState.splice(0, BC_PADDING, ...this.upstreamReactor.state.slice(-BC_PADDING));
} else {
if (math.sum(this.Fs) > 0) {
// Danckwerts BC
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
const BC_dispersion_term = this.D*this.A/(math.sum(this.Fs)*this.d_x);
this.extendedState[BC_PADDING] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, this.extendedState[BC_PADDING+1])));
// Numerical boundary condition (first-order accurate)
this.extendedState[BC_PADDING-1] = math.add(math.multiply(2, this.extendedState[BC_PADDING]), math.multiply(-2, this.extendedState[BC_PADDING+2]), this.extendedState[BC_PADDING+3]);
} else {
// Neumann BC (no flux)
this.extendedState.fill(this.extendedState[BC_PADDING], 0, BC_PADDING);
}
}
// Downstream BC
if (this.downstreamReactor && this.downstreamReactor.config.reactor_type == "PFR") {
// Open boundary, if downstream reactor is PFR
this.extendedState.splice(this.n_x+BC_PADDING, BC_PADDING, ...this.downstreamReactor.state.slice(0, BC_PADDING));
} else {
// Neumann BC (no flux)
this.extendedState.fill(this.extendedState.at(-1-BC_PADDING), BC_PADDING+this.n_x);
}
}
/**
* Create finite difference first derivative operator.
*/
_makeDoperator() { // create gradient operator
const D_size = this.n_x+2*BC_PADDING;
const I = math.resize(math.diag(Array(D_size).fill(1/12), -2), [D_size, D_size]);
const A = math.resize(math.diag(Array(D_size).fill(-2/3), -1), [D_size, D_size]);
const B = math.resize(math.diag(Array(D_size).fill(2/3), 1), [D_size, D_size]);
const C = math.resize(math.diag(Array(D_size).fill(-1/12), 2), [D_size, D_size]);
const D = math.add(I, A, B, C);
// set by BCs elsewhere
D.forEach((row, i) => i < BC_PADDING || i >= this.n_x+BC_PADDING ? row.fill(0) : row);
return D;
}
/**
* Create central finite difference second derivative operator.
*/
_makeD2operator() { // create the central second derivative operator
const D_size = this.n_x+2*BC_PADDING;
const I = math.diag(Array(D_size).fill(-2), 0);
const A = math.resize(math.diag(Array(D_size).fill(1), 1), [D_size, D_size]);
const B = math.resize(math.diag(Array(D_size).fill(1), -1), [D_size, D_size]);
const D2 = math.add(I, A, B);
// set by BCs elsewhere
D2.forEach((row, i) => i < BC_PADDING || i >= this.n_x+BC_PADDING ? row.fill(0) : row);
return D2;
}
/**
* Constrains dispersion so that local Péclet number stays below 2. Needed for stable central differencing method.
*/
_constrainDispersion(D) {
const Dmin = math.sum(this.Fs) * this.d_x / (1.999 * this.A);
if (D < Dmin) {
this.logger.warn(`Local Péclet number too high! Constraining given dispersion (${D}) to minimal value (${Dmin}).`);
return Dmin;
}
return D;
}
}
module.exports = { Reactor_CSTR, Reactor_PFR };

18
src/utils.js Normal file
View File

@@ -0,0 +1,18 @@
/**
* Assert that no NaN values are present in an array.
* @param {Array} arr
* @param {string} label
*/
function assertNoNaN(arr, label = "array") {
if (Array.isArray(arr)) {
for (const el of arr) {
assertNoNaN(el, label);
}
} else {
if (Number.isNaN(arr)) {
throw new Error(`NaN detected in ${label}!`);
}
}
}
module.exports = { assertNoNaN };