Merge pull request 'Added temperature-dependent rate calculation to ASM3 model' (#12) from experimental into main
Reviewed-on: p.vanderwilt/asm3#12
This commit is contained in:
@@ -8,6 +8,7 @@
|
||||
volume: { value: 0., required: true },
|
||||
length: { value: 0.},
|
||||
resolution_L: { value: 0.},
|
||||
alpha: {value: 0},
|
||||
n_inlets: { value: 1, required: true},
|
||||
kla: { value: null },
|
||||
S_O_init: { value: 0., required: true },
|
||||
@@ -75,6 +76,10 @@
|
||||
$(".PFR").show();
|
||||
}
|
||||
});
|
||||
$("#node-input-alpha").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
})
|
||||
// Set initial visibility on dialog open
|
||||
const initialType = $("#node-input-reactor_type").typedInput("value");
|
||||
if (initialType === "CSTR") {
|
||||
@@ -118,6 +123,13 @@
|
||||
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label>
|
||||
<input type="text" id="node-input-resolution_L" placeholder="#">
|
||||
</div>
|
||||
<div class="PFR">
|
||||
<p> Inlet boundary condition parameter α (α = 0: Danckwerts BC / α = 1: Dirichlet BC) </p>
|
||||
<div class="form-row">
|
||||
<label for="node-input-alpha"><i class="fa fa-tag"></i>Adjustable parameter BC</label>
|
||||
<input type="text" id="node-input-alpha">
|
||||
</div>
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-n_inlets"><i class="fa fa-tag"></i> Number of inlets</label>
|
||||
<input type="text" id="node-input-n_inlets" placeholder="#">
|
||||
|
||||
@@ -70,6 +70,7 @@ class nodeClass {
|
||||
volume: parseFloat(uiConfig.volume),
|
||||
length: parseFloat(uiConfig.length),
|
||||
resolution_L: parseInt(uiConfig.resolution_L),
|
||||
alpha: parseFloat(uiConfig.alpha),
|
||||
n_inlets: parseInt(uiConfig.n_inlets),
|
||||
kla: parseFloat(uiConfig.kla),
|
||||
initialState: [
|
||||
|
||||
@@ -69,6 +69,28 @@ class ASM3 {
|
||||
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
|
||||
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
|
||||
};
|
||||
|
||||
/**
|
||||
* Temperature theta parameters for ASM3.
|
||||
* These parameters are used to adjust reaction rates based on temperature.
|
||||
* @property {Object} temp_params - Temperature theta parameters
|
||||
*/
|
||||
this.temp_params = {
|
||||
// Hydrolysis
|
||||
theta_H: this._compute_theta(2, 3, 10, 20),
|
||||
// Heterotrophs
|
||||
theta_STO: this._compute_theta(2.5, 5, 10, 20),
|
||||
theta_mu_H: this._compute_theta(1, 2, 10, 20),
|
||||
theta_b_H_O: this._compute_theta(0.1, 0.2, 10, 20),
|
||||
theta_b_H_NO: this._compute_theta(0.05, 0.1, 10, 20),
|
||||
theta_b_STO_O: this._compute_theta(0.1, 0.2, 10, 20),
|
||||
theta_b_STO_NO: this._compute_theta(0.05, 0.1, 10, 20),
|
||||
// Autotrophs
|
||||
theta_mu_A: this._compute_theta(0.35, 1, 10, 20),
|
||||
theta_b_A_O: this._compute_theta(0.05, 0.15, 10, 20),
|
||||
theta_b_A_NO: this._compute_theta(0.02, 0.05, 10, 20)
|
||||
};
|
||||
|
||||
this.stoi_matrix = this._initialise_stoi_matrix();
|
||||
}
|
||||
|
||||
@@ -103,7 +125,7 @@ class ASM3 {
|
||||
* @param {number} K - Half-saturation constant for the reaction species.
|
||||
* @returns {number} - Monod equation rate value for the given concentration and half-saturation constant.
|
||||
*/
|
||||
_monod(c, K){
|
||||
_monod(c, K) {
|
||||
return c / (K + c);
|
||||
}
|
||||
|
||||
@@ -113,50 +135,76 @@ class ASM3 {
|
||||
* @param {number} K - Half-saturation constant for the reaction species.
|
||||
* @returns {number} - Inverse Monod equation rate value for the given concentration and half-saturation constant.
|
||||
*/
|
||||
_inv_monod(c, K){
|
||||
_inv_monod(c, K) {
|
||||
return K / (K + c);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the reaction rates for each process reaction based on the current state.
|
||||
* Adjust the rate parameter for temperature T using simplied Arrhenius equation based on rate constant at 20 degrees Celsius and theta parameter.
|
||||
* @param {number} k - Rate constant at 20 degrees Celcius.
|
||||
* @param {number} theta - Theta parameter.
|
||||
* @param {number} T - Temperature in Celcius.
|
||||
* @returns {number} - Adjusted rate parameter at temperature T based on the Arrhenius equation.
|
||||
*/
|
||||
_arrhenius(k, theta, T) {
|
||||
return k * Math.exp(theta*(T-20));
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the temperature theta parameter based on two rate constants and their corresponding temperatures.
|
||||
* @param {number} k1 - Rate constant at temperature T1.
|
||||
* @param {number} k2 - Rate constant at temperature T2.
|
||||
* @param {number} T1 - Temperature T1 in Celcius.
|
||||
* @param {number} T2 - Temperature T2 in Celcius.
|
||||
* @returns {number} - Theta parameter.
|
||||
*/
|
||||
_compute_theta(k1, k2, T1, T2) {
|
||||
return Math.log(k1/k2)/(T1-T2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the reaction rates for each process reaction based on the current state and temperature.
|
||||
* @param {Array} state - State vector containing concentrations of reaction species.
|
||||
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
|
||||
* @returns {Array} - Reaction rates for each process reaction.
|
||||
*/
|
||||
compute_rates(state) {
|
||||
compute_rates(state, T = 20) {
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
const rates = Array(12);
|
||||
const [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = state;
|
||||
const { k_H, K_X, k_STO, nu_NO, K_O, K_NO, K_S, K_STO, mu_H_max, K_NH, K_HCO, b_H_O, b_H_NO, b_STO_O, b_STO_NO, mu_A_max, K_A_NH, K_A_O, K_A_HCO, b_A_O, b_A_NO } = this.kin_params;
|
||||
|
||||
const { theta_H, theta_STO, theta_mu_H, theta_b_H_O, theta_b_H_NO, theta_b_STO_O, theta_b_STO_NO, theta_mu_A, theta_b_A_O, theta_b_A_NO } = this.temp_params;
|
||||
|
||||
// Hydrolysis
|
||||
rates[0] = X_H == 0 ? 0 : k_H * this._monod(X_S / X_H, K_X) * X_H;
|
||||
rates[0] = X_H == 0 ? 0 : this._arrhenius(k_H, theta_H, T) * this._monod(X_S / X_H, K_X) * X_H;
|
||||
|
||||
// Heterotrophs
|
||||
rates[1] = k_STO * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
|
||||
rates[2] = k_STO * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
|
||||
rates[3] = X_H == 0 ? 0 : mu_H_max * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[4] = X_H == 0 ? 0 : mu_H_max * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[5] = b_H_O * this._monod(S_O, K_O) * X_H;
|
||||
rates[6] = b_H_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
|
||||
rates[7] = b_STO_O * this._monod(S_O, K_O) * X_H;
|
||||
rates[8] = b_STO_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
|
||||
rates[1] = this._arrhenius(k_STO, theta_STO, T) * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
|
||||
rates[2] = this._arrhenius(k_STO, theta_STO, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
|
||||
rates[3] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[4] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[5] = this._arrhenius(b_H_O, theta_b_H_O, T) * this._monod(S_O, K_O) * X_H;
|
||||
rates[6] = this._arrhenius(b_H_NO, theta_b_H_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
|
||||
rates[7] = this._arrhenius(b_STO_O, theta_b_STO_O, T) * this._monod(S_O, K_O) * X_H;
|
||||
rates[8] = this._arrhenius(b_STO_NO, theta_b_STO_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
|
||||
|
||||
// Autotrophs
|
||||
rates[9] = mu_A_max * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
|
||||
rates[10] = b_A_O * this._monod(S_O, K_O) * X_A;
|
||||
rates[11] = b_A_NO * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
|
||||
rates[9] = this._arrhenius(mu_A_max, theta_mu_A, T) * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
|
||||
rates[10] = this._arrhenius(b_A_O, theta_b_A_O, T) * this._monod(S_O, K_O) * X_A;
|
||||
rates[11] = this._arrhenius(b_A_NO, theta_b_A_NO, T) * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
|
||||
|
||||
return rates;
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the change in concentrations of reaction species based on the current state.
|
||||
* Computes the change in concentrations of reaction species based on the current state and temperature.
|
||||
* @param {Array} state - State vector containing concentrations of reaction species.
|
||||
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
|
||||
* @returns {Array} - Change in reaction species concentrations.
|
||||
*/
|
||||
compute_dC(state) { // compute changes in concentrations
|
||||
compute_dC(state, T = 20) { // compute changes in concentrations
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
return math.multiply(this.stoi_matrix, this.compute_rates(state));
|
||||
return math.multiply(this.stoi_matrix, this.compute_rates(state, T));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -10,7 +10,7 @@ const math = create(all, config);
|
||||
|
||||
const S_O_INDEX = 0;
|
||||
const NUM_SPECIES = 13;
|
||||
const DEBUG = false;
|
||||
const DEBUG = true;
|
||||
|
||||
class Reactor {
|
||||
/**
|
||||
@@ -30,7 +30,7 @@ class Reactor {
|
||||
|
||||
this.currentTime = Date.now(); // milliseconds since epoch [ms]
|
||||
this.timeStep = 1 / (24*60*15); // time step [d]
|
||||
this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second
|
||||
this.speedUpFactor = 1; // speed up factor for simulation, 60 means 1 minute per simulated second
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -149,6 +149,8 @@ class Reactor_PFR extends Reactor {
|
||||
this.d_x = this.length / this.n_x;
|
||||
this.A = this.volume / this.length; // crosssectional area [m2]
|
||||
|
||||
this.alpha = config.alpha;
|
||||
|
||||
this.state = Array.from(Array(this.n_x), () => config.initialState.slice())
|
||||
|
||||
// console.log("Initial State: ")
|
||||
@@ -178,6 +180,7 @@ class Reactor_PFR extends Reactor {
|
||||
set setInfluent(input) {
|
||||
super.setInfluent = input;
|
||||
if(DEBUG) {
|
||||
console.log("Inlet state max " + math.max(this.state[0]))
|
||||
console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A));
|
||||
console.log("Pe local " + this.d_x*math.sum(this.Fs)/(this.D*this.A));
|
||||
console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x));
|
||||
@@ -205,9 +208,7 @@ class Reactor_PFR extends Reactor {
|
||||
const BC_gradient = Array(this.n_x).fill(0);
|
||||
BC_gradient[0] = -1;
|
||||
BC_gradient[1] = 1;
|
||||
let Pe = this.length * math.sum(this.Fs) / (this.D * this.A);
|
||||
let residence_time = this.volume/math.sum(this.Fs);
|
||||
const BC_dispersion = math.multiply((1 - (1 + 4*residence_time/Pe)^0.5) / (Pe*this.d_x), [BC_gradient], state)[0];
|
||||
const BC_dispersion = math.multiply((1 - this.alpha) * this.D*this.A / (math.sum(this.Fs) * this.d_x), [BC_gradient], state)[0];
|
||||
state[0] = math.add(BC_C_in, BC_dispersion).map(val => val < 0 ? 0 : val);
|
||||
} else { // Neumann BC (no flux)
|
||||
state[0] = state[1];
|
||||
|
||||
Reference in New Issue
Block a user