Merge pull request 'MVP for dispersion model' (#5) from experimental into main
Reviewed-on: p.vanderwilt/asm3#5
This commit is contained in:
@@ -4,7 +4,10 @@
|
||||
color: "#c4cce0",
|
||||
defaults: {
|
||||
name: { value: "" },
|
||||
volume: { value: 0., required: true},
|
||||
reactor_type: { value: "CSTR", required: true },
|
||||
volume: { value: 0., required: true },
|
||||
length: { value: 0.},
|
||||
resolution_L: { value: 0.},
|
||||
n_inlets: { value: 1, required: true},
|
||||
kla: { value: null },
|
||||
S_O_init: { value: 0., required: true },
|
||||
@@ -37,6 +40,14 @@
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-length").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-resolution_L").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-kla").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
@@ -45,6 +56,32 @@
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-reactor_type").typedInput({
|
||||
types: [
|
||||
{
|
||||
value: "CSTR",
|
||||
options: [
|
||||
{ value: "CSTR", label: "CSTR"},
|
||||
{ value: "PFR", label: "PFR"}
|
||||
]
|
||||
}
|
||||
]
|
||||
})
|
||||
$("#node-input-reactor_type").on("change", function() {
|
||||
const type = $("#node-input-reactor_type").typedInput("value");
|
||||
if (type === "CSTR") {
|
||||
$(".PFR").hide();
|
||||
} else {
|
||||
$(".PFR").show();
|
||||
}
|
||||
});
|
||||
// Set initial visibility on dialog open
|
||||
const initialType = $("#node-input-reactor_type").typedInput("value");
|
||||
if (initialType === "CSTR") {
|
||||
$(".PFR").hide();
|
||||
} else {
|
||||
$(".PFR").show();
|
||||
}
|
||||
},
|
||||
oneditsave: function() {
|
||||
let volume = parseFloat($("#node-input-volume").typedInput("value"));
|
||||
@@ -65,10 +102,22 @@
|
||||
<input type="text" id="node-input-name" placeholder="Name">
|
||||
</div>
|
||||
<h2> Reactor properties </h2>
|
||||
<div class="form-row">
|
||||
<label for="node-input-reactor_type"><i class="fa fa-tag"></i> Reactor type</label>
|
||||
<input type="text" id="node-input-reactor_type">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-volume"><i class="fa fa-tag"></i> Fluid volume [m3]</label>
|
||||
<input type="text" id="node-input-volume" placeholder="m3">
|
||||
</div>
|
||||
<div class="form-row PFR">
|
||||
<label for="node-input-length"><i class="fa fa-tag"></i> Reactor length [m]</label>
|
||||
<input type="text" id="node-input-length" placeholder="m">
|
||||
</div>
|
||||
<div class="form-row PFR">
|
||||
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label>
|
||||
<input type="text" id="node-input-resolution_L" placeholder="#">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-n_inlets"><i class="fa fa-tag"></i> Number of inlets</label>
|
||||
<input type="text" id="node-input-n_inlets" placeholder="#">
|
||||
|
||||
@@ -5,28 +5,62 @@ module.exports = function(RED) {
|
||||
|
||||
let name = config.name;
|
||||
|
||||
const Reactor = require('./dependencies/reactor_class');
|
||||
const { Reactor_CSTR, Reactor_PFR } = require('./dependencies/reactor_class');
|
||||
|
||||
const reactor = new Reactor(
|
||||
parseFloat(config.volume),
|
||||
parseInt(config.n_inlets),
|
||||
parseFloat(config.kla),
|
||||
[
|
||||
parseFloat(config.S_O_init),
|
||||
parseFloat(config.S_I_init),
|
||||
parseFloat(config.S_S_init),
|
||||
parseFloat(config.S_NH_init),
|
||||
parseFloat(config.S_N2_init),
|
||||
parseFloat(config.S_NO_init),
|
||||
parseFloat(config.S_HCO_init),
|
||||
parseFloat(config.X_I_init),
|
||||
parseFloat(config.X_S_init),
|
||||
parseFloat(config.X_H_init),
|
||||
parseFloat(config.X_STO_init),
|
||||
parseFloat(config.X_A_init),
|
||||
parseFloat(config.X_TS_init)
|
||||
]
|
||||
);
|
||||
let new_reactor;
|
||||
|
||||
switch (config.reactor_type) {
|
||||
case "CSTR":
|
||||
new_reactor = new Reactor_CSTR(
|
||||
parseFloat(config.volume),
|
||||
parseInt(config.n_inlets),
|
||||
parseFloat(config.kla),
|
||||
[
|
||||
parseFloat(config.S_O_init),
|
||||
parseFloat(config.S_I_init),
|
||||
parseFloat(config.S_S_init),
|
||||
parseFloat(config.S_NH_init),
|
||||
parseFloat(config.S_N2_init),
|
||||
parseFloat(config.S_NO_init),
|
||||
parseFloat(config.S_HCO_init),
|
||||
parseFloat(config.X_I_init),
|
||||
parseFloat(config.X_S_init),
|
||||
parseFloat(config.X_H_init),
|
||||
parseFloat(config.X_STO_init),
|
||||
parseFloat(config.X_A_init),
|
||||
parseFloat(config.X_TS_init)
|
||||
]
|
||||
);
|
||||
break;
|
||||
case "PFR":
|
||||
new_reactor = new Reactor_PFR(
|
||||
parseFloat(config.volume),
|
||||
parseFloat(config.length),
|
||||
parseInt(config.resolution_L),
|
||||
parseInt(config.n_inlets),
|
||||
parseFloat(config.kla),
|
||||
[
|
||||
parseFloat(config.S_O_init),
|
||||
parseFloat(config.S_I_init),
|
||||
parseFloat(config.S_S_init),
|
||||
parseFloat(config.S_NH_init),
|
||||
parseFloat(config.S_N2_init),
|
||||
parseFloat(config.S_NO_init),
|
||||
parseFloat(config.S_HCO_init),
|
||||
parseFloat(config.X_I_init),
|
||||
parseFloat(config.X_S_init),
|
||||
parseFloat(config.X_H_init),
|
||||
parseFloat(config.X_STO_init),
|
||||
parseFloat(config.X_A_init),
|
||||
parseFloat(config.X_TS_init)
|
||||
]
|
||||
);
|
||||
break;
|
||||
default:
|
||||
console.warn("Unknown reactor type: " + config.reactor_type);
|
||||
}
|
||||
|
||||
const reactor = new_reactor; // protect from reassignment
|
||||
|
||||
node.on('input', function(msg, send, done) {
|
||||
let toggleUpdate = false;
|
||||
|
||||
118
dependencies/asm3_class.js
vendored
118
dependencies/asm3_class.js
vendored
@@ -2,67 +2,65 @@ const math = require('mathjs')
|
||||
|
||||
class ASM3 {
|
||||
|
||||
kin_params = {
|
||||
// Kinetic parameters (20 C for now)
|
||||
|
||||
// Hydrolysis
|
||||
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
|
||||
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
|
||||
// Heterotrophs
|
||||
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
|
||||
nu_NO: 0.6, // anoxic reduction factor [-]
|
||||
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
|
||||
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
|
||||
K_S: 2., // saturation constant S_s [g COD m-3]
|
||||
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
|
||||
mu_H_max: 2., // maximum specific growth rate [d-1]
|
||||
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_H_O: 0.2, // aerobic respiration rate [d-1]
|
||||
b_H_NO: 0.1, // anoxic respiration rate [d-1]
|
||||
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
|
||||
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
|
||||
// Autotrophs
|
||||
mu_A_max: 1.0, // maximum specific growth rate [d-1]
|
||||
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
|
||||
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_A_O: 0.15, // aerobic respiration rate [d-1]
|
||||
b_A_NO: 0.05 // anoxic respiration rate [d-1]
|
||||
}
|
||||
|
||||
stoi_params = {
|
||||
// Stoichiometric and composition parameters
|
||||
|
||||
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
|
||||
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
|
||||
// Yields
|
||||
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
|
||||
// Composition (COD via DoR)
|
||||
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
|
||||
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
|
||||
// Composition (nitrogen)
|
||||
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
|
||||
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
|
||||
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
|
||||
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
|
||||
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
|
||||
// Composition (TSS)
|
||||
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
|
||||
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
|
||||
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
|
||||
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
|
||||
// Composition (charge)
|
||||
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
|
||||
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
|
||||
}
|
||||
|
||||
constructor() {
|
||||
this.stoi_matrix = this._initialise_stoi_matrix()
|
||||
this.kin_params = {
|
||||
// Kinetic parameters (20 C for now)
|
||||
|
||||
// Hydrolysis
|
||||
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
|
||||
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
|
||||
// Heterotrophs
|
||||
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
|
||||
nu_NO: 0.6, // anoxic reduction factor [-]
|
||||
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
|
||||
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
|
||||
K_S: 2., // saturation constant S_s [g COD m-3]
|
||||
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
|
||||
mu_H_max: 2., // maximum specific growth rate [d-1]
|
||||
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_H_O: 0.2, // aerobic respiration rate [d-1]
|
||||
b_H_NO: 0.1, // anoxic respiration rate [d-1]
|
||||
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
|
||||
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
|
||||
// Autotrophs
|
||||
mu_A_max: 1.0, // maximum specific growth rate [d-1]
|
||||
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
|
||||
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_A_O: 0.15, // aerobic respiration rate [d-1]
|
||||
b_A_NO: 0.05 // anoxic respiration rate [d-1]
|
||||
};
|
||||
this.stoi_params = {
|
||||
// Stoichiometric and composition parameters
|
||||
|
||||
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
|
||||
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
|
||||
// Yields
|
||||
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
|
||||
// Composition (COD via DoR)
|
||||
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
|
||||
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
|
||||
// Composition (nitrogen)
|
||||
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
|
||||
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
|
||||
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
|
||||
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
|
||||
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
|
||||
// Composition (TSS)
|
||||
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
|
||||
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
|
||||
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
|
||||
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
|
||||
// Composition (charge)
|
||||
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
|
||||
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
|
||||
};
|
||||
this.stoi_matrix = this._initialise_stoi_matrix();
|
||||
}
|
||||
|
||||
_initialise_stoi_matrix() { // initialise stoichiometric matrix
|
||||
|
||||
152
dependencies/reactor_class.js
vendored
152
dependencies/reactor_class.js
vendored
@@ -1,11 +1,16 @@
|
||||
const ASM3 = require('./asm3_class')
|
||||
const math = require('mathjs')
|
||||
const { create, all } = require('mathjs')
|
||||
|
||||
const config = {
|
||||
matrix: 'Array' // Choose 'Matrix' (default) or 'Array'
|
||||
}
|
||||
|
||||
const math = create(all, config)
|
||||
|
||||
class Reactor_CSTR {
|
||||
|
||||
constructor(volume, n_inlets, kla, initial_state) {
|
||||
this.state = initial_state;
|
||||
console.log(this.state);
|
||||
this.asm = new ASM3();
|
||||
|
||||
this.Vl = volume; // fluid volume reactor [m3]
|
||||
@@ -16,7 +21,8 @@ class Reactor_CSTR {
|
||||
this.kla = kla; // if NaN, use external OTR [d-1]
|
||||
|
||||
this.currentTime = Date.now(); // milliseconds since epoch [ms]
|
||||
this.timeStep = 1/(24*60*15) // time step [d]
|
||||
this.timeStep = 1/(24*60*15); // time step [d]
|
||||
this.speedUpFactor = 1;
|
||||
}
|
||||
|
||||
set setInfluent(input) { // setter for C_in (WIP)
|
||||
@@ -39,20 +45,18 @@ class Reactor_CSTR {
|
||||
}
|
||||
|
||||
// expect update with timestamp
|
||||
updateState(timestamp) {
|
||||
let newTime = timestamp;
|
||||
updateState(newTime) {
|
||||
|
||||
const day2ms = 1000 * 60 * 60 * 24;
|
||||
|
||||
let n_iter = Math.floor((newTime - this.currentTime) / (this.timeStep * day2ms));
|
||||
if (n_iter > 0) {
|
||||
let n_iter = Math.floor(this.speedUpFactor*(newTime - this.currentTime) / (this.timeStep * day2ms));
|
||||
if (n_iter) {
|
||||
let n = 0;
|
||||
while (n < n_iter) {
|
||||
console.log(this.tick_fe(this.timeStep));
|
||||
this.tick_fe(this.timeStep);
|
||||
n += 1;
|
||||
}
|
||||
this.currentTime += n_iter * this.timeStep * day2ms;
|
||||
n_iter = 0;
|
||||
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -70,15 +74,135 @@ class Reactor_CSTR {
|
||||
}
|
||||
}
|
||||
|
||||
class Reactor_PFR {
|
||||
|
||||
constructor(volume, length, resolution_L, n_inlets, kla, initial_state) {
|
||||
this.asm = new ASM3();
|
||||
|
||||
this.Vl = volume; // fluid volume reactor [m3]
|
||||
this.length = length; // reactor length [m]
|
||||
this.n_x = resolution_L; // number of slices
|
||||
this.d_x = length / resolution_L;
|
||||
|
||||
this.A = volume / length; // crosssectional area [m2]
|
||||
|
||||
this.state = Array.from(Array(this.n_x), () => initial_state.slice())
|
||||
|
||||
// console.log("Initial State: ")
|
||||
// console.log(this.state)
|
||||
|
||||
this.Fs = Array(n_inlets).fill(0.0); // fluid debits per inlet [m3 d-1]
|
||||
this.Cs_in = Array.from(Array(n_inlets), () => new Array(13).fill(0.0)); // composition influents
|
||||
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1]
|
||||
this.D = 0.1; // axial dispersion [m2 d-1]
|
||||
|
||||
this.kla = kla; // if NaN, use external OTR [d-1]
|
||||
|
||||
this.currentTime = Date.now(); // milliseconds since epoch [ms]
|
||||
this.timeStep = 1/(24*60*60); // time step [d]
|
||||
this.speedUpFactor = 1;
|
||||
|
||||
this.D_op = this.makeDoperator();
|
||||
this.D2_op = this.makeD2operator();
|
||||
}
|
||||
|
||||
set setInfluent(input) { // setter for C_in (WIP)
|
||||
let index_in = input.payload.inlet;
|
||||
this.Fs[index_in] = input.payload.F;
|
||||
this.Cs_in[index_in] = input.payload.C;
|
||||
}
|
||||
|
||||
set setOTR(input) { // setter for OTR (WIP) [g O2 d-1]
|
||||
this.OTR = input.payload;
|
||||
}
|
||||
|
||||
set setDispersion(input) { // setter for Axial dispersion [m2 d-1]
|
||||
this.D = input.payload;
|
||||
}
|
||||
|
||||
get getEffluent() { // getter for Effluent, defaults to inlet 0
|
||||
return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state.at(-1)}, timestamp: this.currentTime};
|
||||
}
|
||||
|
||||
calcOTR(S_O, T=20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
|
||||
let S_O_sat = 14.652 - 4.1022e-1*T + 7.9910e-3*T*T + 7.7774e-5*T*T*T;
|
||||
return this.kla * (S_O_sat - S_O);
|
||||
}
|
||||
|
||||
// expect update with timestamp
|
||||
updateState(newTime) {
|
||||
|
||||
const day2ms = 1000 * 60 * 60 * 24;
|
||||
|
||||
let n_iter = Math.floor(this.speedUpFactor*(newTime - this.currentTime) / (this.timeStep * day2ms));
|
||||
if (n_iter) {
|
||||
let n = 0;
|
||||
while (n < n_iter) {
|
||||
this.tick_fe(this.timeStep);
|
||||
n += 1;
|
||||
}
|
||||
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
|
||||
}
|
||||
}
|
||||
|
||||
tick_fe(time_step) { // tick reactor state using forward Euler method
|
||||
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
|
||||
const advection = math.multiply(math.sum(this.Fs)/(this.A*this.d_x), this.D_op, this.state);
|
||||
const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice));
|
||||
reaction[0] = Array(13).fill(0.0);
|
||||
const transfer = Array.from(Array(this.n_x), () => new Array(13).fill(0.0));
|
||||
|
||||
if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
|
||||
transfer.forEach((x) => { x[0] = this.OTR; });
|
||||
} else {
|
||||
transfer.forEach((x, i) => { x[0] = this.calcOTR(this.state[i][0]); });
|
||||
}
|
||||
|
||||
if (math.sum(this.Fs) > 0) { // Danckwerts BC
|
||||
const BC_influx = math.multiply(math.divide([this.Fs], this.A), this.Cs_in)[0];
|
||||
const BC_gradient = Array(this.n_x).fill(0.0);
|
||||
BC_gradient[0] = 1;
|
||||
BC_gradient[1] = -1;
|
||||
const BC_dispersion = math.multiply(this.D * this.A / (math.sum(this.Fs)*this.d_x), [BC_gradient], this.state)[0];
|
||||
this.state[0] = math.add(BC_influx, BC_dispersion);
|
||||
}
|
||||
|
||||
const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step);
|
||||
|
||||
this.state = math.abs(math.add(this.state, dC_total)); // make sure that concentrations do not go negative
|
||||
return this.state;
|
||||
}
|
||||
|
||||
makeDoperator() { // create the upwind scheme gradient operator
|
||||
const I = math.identity(this.n_x);
|
||||
const A = math.resize(math.diag(Array(this.n_x).fill(-1), 1), [this.n_x, this.n_x]);
|
||||
I[0][0] = 0;
|
||||
I[0][1] = 1;
|
||||
I[this.n_x-1][this.n_x-1] = 0; // Neumann boundary condition at x=L
|
||||
return math.add(I, A);
|
||||
}
|
||||
|
||||
makeD2operator() { // create the upwind scheme second derivative operator
|
||||
const I = math.identity(this.n_x);
|
||||
const A = math.resize(math.diag(Array(this.n_x).fill(-1), 1), [this.n_x, this.n_x]);
|
||||
const B = math.resize(math.diag(Array(this.n_x).fill(-1), -1), [this.n_x, this.n_x]);
|
||||
I[0][0] = 0;
|
||||
I[0][1] = 1;
|
||||
return math.add(I, A, B);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// testing stuff
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
|
||||
// const Reactor = new Reactor_CSTR(initial_state);
|
||||
// Reactor.C_in = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.];
|
||||
// N = 0;
|
||||
// const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state);
|
||||
// Reactor.Cs_in[0] = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.];
|
||||
// Reactor.Fs[0] = 10;
|
||||
// let N = 0;
|
||||
// while (N < 500) {
|
||||
// console.log(Reactor.tick_fe(0.001));
|
||||
// N += 1;
|
||||
// }
|
||||
|
||||
module.exports = Reactor_CSTR;
|
||||
module.exports = {Reactor_CSTR, Reactor_PFR};
|
||||
Reference in New Issue
Block a user