Refactor documentation in nodeClass and reactor_class for clarity and consistency
This commit is contained in:
@@ -3,9 +3,9 @@ const { Reactor_CSTR, Reactor_PFR } = require('./reactor_class.js');
|
||||
|
||||
class nodeClass {
|
||||
/**
|
||||
* Construct ReactorNode.
|
||||
* Node-RED node class for advanced-reactor.
|
||||
* @param {object} uiConfig - Node-RED node configuration
|
||||
* @param {object} RED - Node-RED runtime API
|
||||
* @param {object} RED - Node-RED runtime API
|
||||
* @param {object} nodeInstance - Node-RED node instance
|
||||
* @param {string} nameOfNode - Name of the node
|
||||
*/
|
||||
|
||||
@@ -8,7 +8,10 @@ const config = {
|
||||
const math = create(all, config)
|
||||
|
||||
class Reactor {
|
||||
|
||||
/**
|
||||
* Reactor base class.
|
||||
* @param {object} config - Configuration object containing reactor parameters.
|
||||
*/
|
||||
constructor(config){
|
||||
this.asm = new ASM3();
|
||||
|
||||
@@ -18,62 +21,91 @@ class Reactor {
|
||||
this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(13).fill(0.0)); // composition influents
|
||||
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1]
|
||||
|
||||
this.kla = config.kla; // if NaN, use external OTR [d-1]
|
||||
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
|
||||
|
||||
this.currentTime = Date.now(); // milliseconds since epoch [ms]
|
||||
this.timeStep = 1/(24*60*15); // time step [d]
|
||||
this.speedUpFactor = 60;
|
||||
this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second
|
||||
}
|
||||
|
||||
set setInfluent(input) { // setter for C_in (WIP)
|
||||
/**
|
||||
* Setter for influent data.
|
||||
* @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
|
||||
*/
|
||||
set setInfluent(input) {
|
||||
let index_in = input.payload.inlet;
|
||||
this.Fs[index_in] = input.payload.F;
|
||||
this.Cs_in[index_in] = input.payload.C;
|
||||
// DEBUG
|
||||
// console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A));
|
||||
// console.log("Pe local " + this.d_x*math.sum(this.Fs)/(this.D*this.A));
|
||||
// console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x));
|
||||
// console.log("Co D " + this.D*this.timeStep/(this.d_x*this.d_x));
|
||||
}
|
||||
|
||||
set setOTR(input) { // setter for OTR (WIP) [g O2 d-1]
|
||||
/**
|
||||
* Setter for OTR (Oxygen Transfer Rate).
|
||||
* @param {object} input - Input object (msg) containing payload with OTR value [g O2 d-1].
|
||||
*/
|
||||
set setOTR(input) {
|
||||
this.OTR = input.payload;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param {number} S_O - Dissolved oxygen concentration [g O2 m-3].
|
||||
* @param {number} T - Temperature in Celsius, default to 20 C.
|
||||
* @returns
|
||||
*/
|
||||
calcOTR(S_O, T=20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
|
||||
let S_O_sat = 14.652 - 4.1022e-1*T + 7.9910e-3*T*T + 7.7774e-5*T*T*T;
|
||||
return this.kla * (S_O_sat - S_O);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
class Reactor_CSTR extends Reactor {
|
||||
|
||||
constructor(config) {
|
||||
super(config);
|
||||
this.state = config.initialState;
|
||||
}
|
||||
|
||||
get getEffluent() { // getter for Effluent, defaults to inlet 0
|
||||
return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state}, timestamp: this.currentTime};
|
||||
}
|
||||
|
||||
// expect update with timestamp
|
||||
updateState(newTime) {
|
||||
|
||||
/**
|
||||
* Update the reactor state based on the new time.
|
||||
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
|
||||
*/
|
||||
updateState(newTime) { // expect update with timestamp
|
||||
const day2ms = 1000 * 60 * 60 * 24;
|
||||
|
||||
let n_iter = Math.floor(this.speedUpFactor*(newTime - this.currentTime) / (this.timeStep * day2ms));
|
||||
if (n_iter) {
|
||||
let n = 0;
|
||||
while (n < n_iter) {
|
||||
this.tick_fe(this.timeStep);
|
||||
this.tick(this.timeStep);
|
||||
n += 1;
|
||||
}
|
||||
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
|
||||
}
|
||||
}
|
||||
|
||||
tick_fe(time_step) { // tick reactor state using forward Euler method
|
||||
}
|
||||
|
||||
class Reactor_CSTR extends Reactor {
|
||||
/**
|
||||
* Reactor_CSTR class for Continuous Stirred Tank Reactor.
|
||||
* @param {object} config - Configuration object containing reactor parameters.
|
||||
*/
|
||||
constructor(config) {
|
||||
super(config);
|
||||
this.state = config.initialState;
|
||||
}
|
||||
|
||||
/**
|
||||
* Getter for effluent data.
|
||||
* @returns {object} Effluent data object (msg), defaults to inlet 0.
|
||||
*/
|
||||
get getEffluent() { // getter for Effluent, defaults to inlet 0
|
||||
return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state}, timestamp: this.currentTime};
|
||||
}
|
||||
|
||||
/**
|
||||
* Tick the reactor state using the forward Euler method.
|
||||
* @param {number} time_step - Time step for the simulation [d].
|
||||
* @returns {Array} - New reactor state.
|
||||
*/
|
||||
tick(time_step) { // tick reactor state using forward Euler method
|
||||
const r = this.asm.compute_dC(this.state);
|
||||
const dC_in = math.multiply(math.divide([this.Fs], this.Vl), this.Cs_in)[0];
|
||||
const dC_out = math.multiply(-1*math.sum(this.Fs)/this.Vl, this.state);
|
||||
@@ -89,7 +121,10 @@ class Reactor_CSTR extends Reactor {
|
||||
}
|
||||
|
||||
class Reactor_PFR extends Reactor {
|
||||
|
||||
/**
|
||||
* Reactor_PFR class for Plug Flow Reactor.
|
||||
* @param {object} config - Configuration object containing reactor parameters.
|
||||
*/
|
||||
constructor(config) {
|
||||
super(config);
|
||||
|
||||
@@ -109,31 +144,29 @@ class Reactor_PFR extends Reactor {
|
||||
this.D_op = this.makeDoperator(true, true);
|
||||
this.D2_op = this.makeD2operator();
|
||||
}
|
||||
|
||||
set setDispersion(input) { // setter for Axial dispersion [m2 d-1]
|
||||
|
||||
/**
|
||||
* Setter for axial dispersion.
|
||||
* @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1].
|
||||
*/
|
||||
set setDispersion(input) {
|
||||
this.D = input.payload;
|
||||
}
|
||||
|
||||
get getEffluent() { // getter for Effluent, defaults to inlet 0
|
||||
/**
|
||||
* Getter for effluent data.
|
||||
* @returns {object} Effluent data object (msg), defaults to inlet 0.
|
||||
*/
|
||||
get getEffluent() {
|
||||
return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state.at(-1)}, timestamp: this.currentTime};
|
||||
}
|
||||
|
||||
// expect update with timestamp
|
||||
updateState(newTime) {
|
||||
const day2ms = 1000 * 60 * 60 * 24;
|
||||
|
||||
let n_iter = Math.floor(this.speedUpFactor*(newTime - this.currentTime) / (this.timeStep * day2ms));
|
||||
if (n_iter) {
|
||||
let n = 0;
|
||||
while (n < n_iter) {
|
||||
this.tick_fe(this.timeStep);
|
||||
n += 1;
|
||||
}
|
||||
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
|
||||
}
|
||||
}
|
||||
|
||||
tick_fe(time_step) { // tick reactor state using forward Euler method
|
||||
/**
|
||||
* Tick the reactor state using explicit finite difference method.
|
||||
* @param {number} time_step - Time step for the simulation [d].
|
||||
* @returns {Array} - New reactor state.
|
||||
*/
|
||||
tick(time_step) {
|
||||
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
|
||||
const advection = math.multiply(-1*math.sum(this.Fs)/(this.A*this.d_x), this.D_op, this.state);
|
||||
const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice));
|
||||
@@ -185,6 +218,12 @@ class Reactor_PFR extends Reactor {
|
||||
return new_state;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create finite difference first derivative operator.
|
||||
* @param {boolean} central - Use central difference scheme if true, otherwise use upwind scheme.
|
||||
* @param {boolean} higher_order - Use higher order scheme if true, otherwise use first order scheme.
|
||||
* @returns {Array} - First derivative operator matrix.
|
||||
*/
|
||||
makeDoperator(central=false, higher_order=false) { // create gradient operator
|
||||
if (higher_order) {
|
||||
if (central) {
|
||||
@@ -218,6 +257,10 @@ class Reactor_PFR extends Reactor {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create central finite difference second derivative operator.
|
||||
* @returns {Array} - Second derivative operator matrix.
|
||||
*/
|
||||
makeD2operator() { // create the central second derivative operator
|
||||
const I = math.diag(Array(this.n_x).fill(-2), 0);
|
||||
const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]);
|
||||
@@ -230,7 +273,7 @@ class Reactor_PFR extends Reactor {
|
||||
}
|
||||
|
||||
|
||||
// testing stuff
|
||||
// DEBUG
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
|
||||
// const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state);
|
||||
@@ -239,7 +282,7 @@ class Reactor_PFR extends Reactor {
|
||||
// Reactor.D = 0.01;
|
||||
// let N = 0;
|
||||
// while (N < 5000) {
|
||||
// console.log(Reactor.tick_fe(0.001));
|
||||
// console.log(Reactor.tick(0.001));
|
||||
// N += 1;
|
||||
// }
|
||||
|
||||
|
||||
Reference in New Issue
Block a user