Resolve merge conflicts from migration

This commit is contained in:
2025-09-22 16:40:22 +02:00
16 changed files with 3569 additions and 14 deletions

136
.gitignore vendored Normal file
View File

@@ -0,0 +1,136 @@
# Logs
logs
*.log
npm-debug.log*
yarn-debug.log*
yarn-error.log*
lerna-debug.log*
.pnpm-debug.log*
# Diagnostic reports (https://nodejs.org/api/report.html)
report.[0-9]*.[0-9]*.[0-9]*.[0-9]*.json
# Runtime data
pids
*.pid
*.seed
*.pid.lock
# Directory for instrumented libs generated by jscoverage/JSCover
lib-cov
# Coverage directory used by tools like istanbul
coverage
*.lcov
# nyc test coverage
.nyc_output
# Grunt intermediate storage (https://gruntjs.com/creating-plugins#storing-task-files)
.grunt
# Bower dependency directory (https://bower.io/)
bower_components
# node-waf configuration
.lock-wscript
# Compiled binary addons (https://nodejs.org/api/addons.html)
build/Release
# Dependency directories
node_modules/
jspm_packages/
# Snowpack dependency directory (https://snowpack.dev/)
web_modules/
# TypeScript cache
*.tsbuildinfo
# Optional npm cache directory
.npm
# Optional eslint cache
.eslintcache
# Optional stylelint cache
.stylelintcache
# Microbundle cache
.rpt2_cache/
.rts2_cache_cjs/
.rts2_cache_es/
.rts2_cache_umd/
# Optional REPL history
.node_repl_history
# Output of 'npm pack'
*.tgz
# Yarn Integrity file
.yarn-integrity
# dotenv environment variable files
.env
.env.development.local
.env.test.local
.env.production.local
.env.local
# parcel-bundler cache (https://parceljs.org/)
.cache
.parcel-cache
# Next.js build output
.next
out
# Nuxt.js build / generate output
.nuxt
dist
# Gatsby files
.cache/
# Comment in the public line in if your project uses Gatsby and not Next.js
# https://nextjs.org/blog/next-9-1#public-directory-support
# public
# vuepress build output
.vuepress/dist
# vuepress v2.x temp and cache directory
.temp
.cache
# vitepress build output
**/.vitepress/dist
# vitepress cache directory
**/.vitepress/cache
# Docusaurus cache and generated files
.docusaurus
# Serverless directories
.serverless/
# FuseBox cache
.fusebox/
# DynamoDB Local files
.dynamodb/
# TernJS port file
.tern-port
# Stores VSCode versions used for testing VSCode extensions
.vscode-test
# yarn v2
.yarn/cache
.yarn/unplugged
.yarn/build-state.yml
.yarn/install-state.gz
.pnp.*

View File

@@ -1,16 +1,17 @@
# reactor
Reactor: Advanced Hydraulic Tank & Biological Process Simulator
A comprehensive reactor class for wastewater treatment simulation featuring plug flow hydraulics, ASM1-ASM3 biological modeling, and multi-sectional concentration tracking. Implements hydraulic retention time calculations, dispersion modeling, and real-time biological reaction kinetics for accurate process simulation.
Key Features:
Plug Flow Hydraulics: Multi-section reactor with configurable sectioning factor and dispersion modeling
ASM1 Integration: Complete biological nutrient removal modeling with 13 state variables (COD, nitrogen, phosphorus)
Dynamic Volume Control: Automatic section management with overflow handling and retention time calculations
Oxygen Transfer: Saturation-limited O2 transfer with Fick's law slowdown effects and solubility curves
Real-time Kinetics: Continuous biological reaction rate calculations with configurable time acceleration
Weighted Averaging: Volume-based concentration mixing for accurate mass balance calculations
Child Registration: Integration with diffuser systems and upstream/downstream reactor networks
Supports complex biological treatment train modeling with temperature compensation, sludge calculations, and comprehensive process monitoring for wastewater treatment plant optimization and regulatory compliance.
Reactor: Advanced Hydraulic Tank & Biological Process Simulator
A comprehensive reactor class for wastewater treatment simulation featuring plug flow hydraulics, ASM1-ASM3 biological modeling, and multi-sectional concentration tracking. Implements hydraulic retention time calculations, dispersion modeling, and real-time biological reaction kinetics for accurate process simulation.
Key Features:
Plug Flow Hydraulics: Multi-section reactor with configurable sectioning factor and dispersion modeling
ASM1 Integration: Complete biological nutrient removal modeling with 13 state variables (COD, nitrogen, phosphorus)
Dynamic Volume Control: Automatic section management with overflow handling and retention time calculations
Oxygen Transfer: Saturation-limited O2 transfer with Fick's law slowdown effects and solubility curves
Real-time Kinetics: Continuous biological reaction rate calculations with configurable time acceleration
Weighted Averaging: Volume-based concentration mixing for accurate mass balance calculations
Child Registration: Integration with diffuser systems and upstream/downstream reactor networks
Supports complex biological treatment train modeling with temperature compensation, sludge calculations, and comprehensive process monitoring for wastewater treatment plant optimization and regulatory compliance.

View File

@@ -0,0 +1,57 @@
<script type="text/javascript">
RED.nodes.registerType("recirculation-pump", {
category: "WWTP",
color: "#e4a363",
defaults: {
name: { value: "" },
F2: { value: 0, required: true },
inlet: { value: 1, required: true }
},
inputs: 1,
outputs: 2,
outputLabels: ["Main effluent", "Recirculation effluent"],
icon: "font-awesome/fa-random",
label: function() {
return this.name || "Recirculation pump";
},
oneditprepare: function() {
$("#node-input-F2").typedInput({
type:"num",
types:["num"]
});
$("#node-input-inlet").typedInput({
type:"num",
types:["num"]
});
},
oneditsave: function() {
let debit = parseFloat($("#node-input-F2").typedInput("value"));
if (isNaN(debit) || debit < 0) {
RED.notify("Debit is not set correctly", {type: "error"});
}
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
if (inlet < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
<script type="text/html" data-template-name="recirculation-pump">
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
<div class="form-row">
<label for="node-input-F2"><i class="fa fa-tag"></i> Recirculation debit [m3 d-1]</label>
<input type="text" id="node-input-F2" placeholder="m3 s-1">
</div>
<div class="form-row">
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet recirculation</label>
<input type="text" id="node-input-inlet" placeholder="#">
</div>
</script>
<script type="text/html" data-help-name="recirculation-pump">
<p>Recirculation-pump for splitting streams</p>
</script>

View File

@@ -0,0 +1,40 @@
module.exports = function(RED) {
function recirculation(config) {
RED.nodes.createNode(this, config);
var node = this;
let name = config.name;
let F2 = parseFloat(config.F2);
const inlet_F2 = parseInt(config.inlet);
node.on('input', function(msg, send, done) {
switch (msg.topic) {
case "Fluent":
// conserve volume flow debit
let F_in = msg.payload.F;
let F1 = Math.max(F_in - F2, 0);
let F2_corr = F_in < F2 ? F_in : F2;
let msg_F1 = structuredClone(msg);
msg_F1.payload.F = F1;
let msg_F2 = {...msg};
msg_F2.payload.F = F2_corr;
msg_F2.payload.inlet = inlet_F2;
send([msg_F1, msg_F2]);
break;
case "clock":
break;
default:
console.log("Unknown topic: " + msg.topic);
}
if (done) {
done();
}
});
}
RED.nodes.registerType("recirculation-pump", recirculation);
};

View File

@@ -0,0 +1,57 @@
<script type="text/javascript">
RED.nodes.registerType("settling-basin", {
category: "WWTP",
color: "#e4a363",
defaults: {
name: { value: "" },
TS_set: { value: 0.1, required: true },
inlet: { value: 1, required: true }
},
inputs: 1,
outputs: 2,
outputLabels: ["Main effluent", "Sludge effluent"],
icon: "font-awesome/fa-random",
label: function() {
return this.name || "Settling basin";
},
oneditprepare: function() {
$("#node-input-TS_set").typedInput({
type:"num",
types:["num"]
});
$("#node-input-inlet").typedInput({
type:"num",
types:["num"]
});
},
oneditsave: function() {
let TS_set = parseFloat($("#node-input-TS_set").typedInput("value"));
if (isNaN(TS_set) || TS_set < 0) {
RED.notify("TS is not set correctly", {type: "error"});
}
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
if (inlet < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
<script type="text/html" data-template-name="settling-basin">
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
<div class="form-row">
<label for="node-input-TS_set"><i class="fa fa-tag"></i> Total Solids set point [g m-3]</label>
<input type="text" id="node-input-TS_set" placeholder="">
</div>
<div class="form-row">
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet return line</label>
<input type="text" id="node-input-inlet" placeholder="#">
</div>
</script>
<script type="text/html" data-help-name="settling-basin">
<p>Settling tank</p>
</script>

View File

@@ -0,0 +1,57 @@
module.exports = function(RED) {
function settler(config) {
RED.nodes.createNode(this, config);
var node = this;
let name = config.name;
let TS_set = parseFloat(config.TS_set);
const inlet_sludge = parseInt(config.inlet);
node.on('input', function(msg, send, done) {
switch (msg.topic) {
case "Fluent":
// conserve volume flow debit
let F_in = msg.payload.F;
let C_in = msg.payload.C;
let F2 = (F_in * C_in[12]) / TS_set;
let F1 = Math.max(F_in - F2, 0);
let F2_corr = F_in < F2 ? F_in : F2;
let msg_F1 = structuredClone(msg);
msg_F1.payload.F = F1;
msg_F1.payload.C[7] = 0;
msg_F1.payload.C[8] = 0;
msg_F1.payload.C[9] = 0;
msg_F1.payload.C[10] = 0;
msg_F1.payload.C[11] = 0;
msg_F1.payload.C[12] = 0;
let msg_F2 = {...msg};
msg_F2.payload.F = F2_corr;
if (F2_corr > 0) {
msg_F2.payload.C[7] = F_in * C_in[7] / F2;
msg_F2.payload.C[8] = F_in * C_in[8] / F2;
msg_F2.payload.C[9] = F_in * C_in[9] / F2;
msg_F2.payload.C[10] = F_in * C_in[10] / F2;
msg_F2.payload.C[11] = F_in * C_in[11] / F2;
msg_F2.payload.C[12] = F_in * C_in[12] / F2;
}
msg_F2.payload.inlet = inlet_sludge;
send([msg_F1, msg_F2]);
break;
case "clock":
break;
default:
console.log("Unknown topic: " + msg.topic);
}
if (done) {
done();
}
});
}
RED.nodes.registerType("settling-basin", settler);
};

1763
flows/asm3_flows.json Normal file

File diff suppressed because it is too large Load Diff

119
package-lock.json generated Normal file
View File

@@ -0,0 +1,119 @@
{
"name": "asm3",
"version": "0.0.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "asm3",
"version": "0.0.1",
"license": "SEE LICENSE",
"dependencies": {
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git#fix-missing-references",
"mathjs": "^14.5.2"
}
},
"node_modules/@babel/runtime": {
"version": "7.28.3",
"resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.28.3.tgz",
"integrity": "sha512-9uIQ10o0WGdpP6GDhXcdOJPJuDgFtIDtN/9+ArJQ2NAfAmiuhTQdzkaTGR33v43GYS2UrSA0eX2pPPHoFVvpxA==",
"license": "MIT",
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/complex.js": {
"version": "2.4.2",
"resolved": "https://registry.npmjs.org/complex.js/-/complex.js-2.4.2.tgz",
"integrity": "sha512-qtx7HRhPGSCBtGiST4/WGHuW+zeaND/6Ld+db6PbrulIB1i2Ev/2UPiqcmpQNPSyfBKraC0EOvOKCB5dGZKt3g==",
"license": "MIT",
"engines": {
"node": "*"
},
"funding": {
"type": "github",
"url": "https://github.com/sponsors/rawify"
}
},
"node_modules/decimal.js": {
"version": "10.6.0",
"resolved": "https://registry.npmjs.org/decimal.js/-/decimal.js-10.6.0.tgz",
"integrity": "sha512-YpgQiITW3JXGntzdUmyUR1V812Hn8T1YVXhCu+wO3OpS4eU9l4YdD3qjyiKdV6mvV29zapkMeD390UVEf2lkUg==",
"license": "MIT"
},
"node_modules/escape-latex": {
"version": "1.2.0",
"resolved": "https://registry.npmjs.org/escape-latex/-/escape-latex-1.2.0.tgz",
"integrity": "sha512-nV5aVWW1K0wEiUIEdZ4erkGGH8mDxGyxSeqPzRNtWP7ataw+/olFObw7hujFWlVjNsaDFw5VZ5NzVSIqRgfTiw==",
"license": "MIT"
},
"node_modules/fraction.js": {
"version": "5.3.4",
"resolved": "https://registry.npmjs.org/fraction.js/-/fraction.js-5.3.4.tgz",
"integrity": "sha512-1X1NTtiJphryn/uLQz3whtY6jK3fTqoE3ohKs0tT+Ujr1W59oopxmoEh7Lu5p6vBaPbgoM0bzveAW4Qi5RyWDQ==",
"license": "MIT",
"engines": {
"node": "*"
},
"funding": {
"type": "github",
"url": "https://github.com/sponsors/rawify"
}
},
"node_modules/generalFunctions": {
"version": "1.0.0",
"resolved": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git#302e12238745766a679ef11ca6ed5f4ea1548f87",
"license": "SEE LICENSE"
},
"node_modules/javascript-natural-sort": {
"version": "0.7.1",
"resolved": "https://registry.npmjs.org/javascript-natural-sort/-/javascript-natural-sort-0.7.1.tgz",
"integrity": "sha512-nO6jcEfZWQXDhOiBtG2KvKyEptz7RVbpGP4vTD2hLBdmNQSsCiicO2Ioinv6UI4y9ukqnBpy+XZ9H6uLNgJTlw==",
"license": "MIT"
},
"node_modules/mathjs": {
"version": "14.7.0",
"resolved": "https://registry.npmjs.org/mathjs/-/mathjs-14.7.0.tgz",
"integrity": "sha512-RaMhb+9MSESjDZNox/FzzuFpIUI+oxGLyOy1t3BMoW53pGWnTzZtlucJ5cvbit0dIMYlCq00gNbW1giZX4/1Rg==",
"license": "Apache-2.0",
"dependencies": {
"@babel/runtime": "^7.26.10",
"complex.js": "^2.2.5",
"decimal.js": "^10.4.3",
"escape-latex": "^1.2.0",
"fraction.js": "^5.2.1",
"javascript-natural-sort": "^0.7.1",
"seedrandom": "^3.0.5",
"tiny-emitter": "^2.1.0",
"typed-function": "^4.2.1"
},
"bin": {
"mathjs": "bin/cli.js"
},
"engines": {
"node": ">= 18"
}
},
"node_modules/seedrandom": {
"version": "3.0.5",
"resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-3.0.5.tgz",
"integrity": "sha512-8OwmbklUNzwezjGInmZ+2clQmExQPvomqjL7LFqOYqtmuxRgQYqOD3mHaU+MvZn5FLUeVxVfQjwLZW/n/JFuqg==",
"license": "MIT"
},
"node_modules/tiny-emitter": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/tiny-emitter/-/tiny-emitter-2.1.0.tgz",
"integrity": "sha512-NB6Dk1A9xgQPMoGqC5CVXn123gWyte215ONT5Pp5a0yt4nlEoO1ZWeCwpncaekPHXO60i47ihFnZPiRPjRMq4Q==",
"license": "MIT"
},
"node_modules/typed-function": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/typed-function/-/typed-function-4.2.1.tgz",
"integrity": "sha512-EGjWssW7Tsk4DGfE+5yluuljS1OGYWiI1J6e8puZz9nTMM51Oug8CD5Zo4gWMsOhq5BI+1bF+rWTm4Vbj3ivRA==",
"license": "MIT",
"engines": {
"node": ">= 18"
}
}
}
}

33
package.json Normal file
View File

@@ -0,0 +1,33 @@
{
"name": "asm3",
"version": "0.0.1",
"description": "Implementation of the asm3 model for Node-Red",
"repository": {
"type": "git",
"url": "https://gitea.centraal.wbd-rd.nl/RnD/reactor.git"
},
"keywords": [
"asm3",
"activated sludge",
"wastewater",
"biological model",
"node-red"
],
"license": "SEE LICENSE",
"author": "P.R. van der Wilt",
"main": "reactor.js",
"scripts": {
"test": "node reactor.js"
},
"node-red": {
"nodes": {
"reactor": "reactor.js",
"recirculation-pump": "additional_nodes/recirculation-pump.js",
"settling-basin": "additional_nodes/settling-basin.js"
}
},
"dependencies": {
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git#fix-missing-references",
"mathjs": "^14.5.2"
}
}

248
reactor.html Normal file
View File

@@ -0,0 +1,248 @@
<script src="/advancedReactor/menu.js"></script>
<script type="text/javascript">
RED.nodes.registerType("advancedReactor", {
category: "WWTP",
color: "#c4cce0",
defaults: {
name: { value: "" },
reactor_type: { value: "CSTR", required: true },
volume: { value: 0., required: true },
length: { value: 0.},
resolution_L: { value: 0.},
alpha: {value: 0},
n_inlets: { value: 1, required: true},
kla: { value: null },
S_O_init: { value: 0., required: true },
S_I_init: { value: 30., required: true },
S_S_init: { value: 100., required: true },
S_NH_init: { value: 16., required: true },
S_N2_init: { value: 0., required: true },
S_NO_init: { value: 0., required: true },
S_HCO_init: { value: 5., required: true },
X_I_init: { value: 25., required: true },
X_S_init: { value: 75., required: true },
X_H_init: { value: 30., required: true },
X_STO_init: { value: 0., required: true },
X_A_init: { value: 0.001, required: true },
X_TS_init: { value: 125.0009, required: true },
timeStep: { value: 1, required: true },
enableLog: { value: false },
logLevel: { value: "error" },
positionVsParent: { value: "" },
},
inputs: 1,
outputs: 3,
inputLabels: ["input"],
outputLabels: ["process", "dbase", "parent"],
icon: "font-awesome/fa-recycle",
label: function() {
return this.name || "advancedReactor";
},
oneditprepare: function() {
// wait for the menu scripts to load
const waitForMenuData = () => {
if (window.EVOLV?.nodes?.advancedReactor?.initEditor) {
window.EVOLV.nodes.advancedReactor.initEditor(this);
} else {
setTimeout(waitForMenuData, 50);
}
};
waitForMenuData();
$("#node-input-volume").typedInput({
type:"num",
types:["num"]
});
$("#node-input-n_inlets").typedInput({
type:"num",
types:["num"]
});
$("#node-input-length").typedInput({
type:"num",
types:["num"]
});
$("#node-input-resolution_L").typedInput({
type:"num",
types:["num"]
});
$("#node-input-kla").typedInput({
type:"num",
types:["num"]
});
$(".concentrations").typedInput({
type:"num",
types:["num"]
});
$("#node-input-reactor_type").typedInput({
types: [
{
value: "CSTR",
options: [
{ value: "CSTR", label: "CSTR"},
{ value: "PFR", label: "PFR"}
]
}
]
})
$("#node-input-reactor_type").on("change", function() {
const type = $("#node-input-reactor_type").typedInput("value");
if (type === "CSTR") {
$(".PFR").hide();
} else {
$(".PFR").show();
}
});
$("#node-input-alpha").typedInput({
type:"num",
types:["num"]
})
$("#node-input-timeStep").typedInput({
type:"num",
types:["num"]
})
// Set initial visibility on dialog open
const initialType = $("#node-input-reactor_type").typedInput("value");
if (initialType === "CSTR") {
$(".PFR").hide();
} else {
$(".PFR").show();
}
},
oneditsave: function() {
// save logger fields
if (window.EVOLV?.nodes?.['advancedReactor']?.loggerMenu?.saveEditor) {
window.EVOLV.nodes['advancedReactor'].loggerMenu.saveEditor(this);
}
// save position field
if (window.EVOLV?.nodes?.measurement?.positionMenu?.saveEditor) {
window.EVOLV.nodes.rotatingMachine.positionMenu.saveEditor(this);
}
let volume = parseFloat($("#node-input-volume").typedInput("value"));
if (isNaN(volume) || volume <= 0) {
RED.notify("Fluid volume not set correctly", {type: "error"});
}
let n_inlets = parseInt($("#node-input-n_inlets").typedInput("value"));
if (isNaN(n_inlets) || n_inlets < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
<script type="text/html" data-template-name="advancedReactor">
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
<h2> Reactor properties </h2>
<div class="form-row">
<label for="node-input-reactor_type"><i class="fa fa-tag"></i> Reactor type</label>
<input type="text" id="node-input-reactor_type">
</div>
<div class="form-row">
<label for="node-input-volume"><i class="fa fa-tag"></i> Fluid volume [m3]</label>
<input type="text" id="node-input-volume" placeholder="m3">
</div>
<div class="form-row PFR">
<label for="node-input-length"><i class="fa fa-tag"></i> Reactor length [m]</label>
<input type="text" id="node-input-length" placeholder="m">
</div>
<div class="form-row PFR">
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label>
<input type="text" id="node-input-resolution_L" placeholder="#">
</div>
<div class="PFR">
<p> Inlet boundary condition parameter &alpha; (&alpha; = 0: Danckwerts BC / &alpha; = 1: Dirichlet BC) </p>
<div class="form-row">
<label for="node-input-alpha"><i class="fa fa-tag"></i>Adjustable parameter BC</label>
<input type="text" id="node-input-alpha">
</div>
</div>
<div class="form-row">
<label for="node-input-n_inlets"><i class="fa fa-tag"></i> Number of inlets</label>
<input type="text" id="node-input-n_inlets" placeholder="#">
</div>
<h3> Internal mass transfer calculation (optional) </h3>
<div class="form-row">
<label for="node-input-kla"><i class="fa fa-tag"></i> kLa [d-1]</label>
<input type="text" id="node-input-kla" placeholder="d-1">
</div>
<h2> Dissolved components </h2>
<div class="form-row">
<label for="node-input-S_O_init"><i class="fa fa-tag"></i> Initial dissolved oxygen [g O2 m-3]</label>
<input type="text" id="node-input-S_O_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_I_init"><i class="fa fa-tag"></i> Initial soluble inert organics [g COD m-3]</label>
<input type="text" id="node-input-S_I_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_S_init"><i class="fa fa-tag"></i> Initial readily biodegrable substrates [g COD m-3]</label>
<input type="text" id="node-input-S_S_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_NH_init"><i class="fa fa-tag"></i> Initial ammonium / ammonia [g N m-3]</label>
<input type="text" id="node-input-S_NH_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_N2_init"><i class="fa fa-tag"></i> Initial dinitrogen, released by denitrification [g N m-3]</label>
<input type="text" id="node-input-S_N2_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_NO_init"><i class="fa fa-tag"></i> Initial nitrite + nitrate [g N m-3]</label>
<input type="text" id="node-input-S_NO_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-S_HCO_init"><i class="fa fa-tag"></i> Initial alkalinity, bicarbonate [mole HCO3- m-3]</label>
<input type="text" id="node-input-S_HCO_init" class="concentrations">
</div>
<h2> Particulate components </h2>
<div class="form-row">
<label for="node-input-X_I_init"><i class="fa fa-tag"></i> Initial inert particulate organics [g COD m-3]</label>
<input type="text" id="node-input-X_I_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-X_S_init"><i class="fa fa-tag"></i> Initial slowly biodegrable substrates [g COD m-3]</label>
<input type="text" id="node-input-X_S_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-X_H_init"><i class="fa fa-tag"></i> Initial heterotrophic biomass [g COD m-3]</label>
<input type="text" id="node-input-X_H_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-X_STO_init"><i class="fa fa-tag"></i> Initial Organics stored by heterotrophs [g COD m-3]</label>
<input type="text" id="node-input-X_STO_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-X_A_init"><i class="fa fa-tag"></i> Initial autotrophic, nitrifying biomass [g COD m-3]</label>
<input type="text" id="node-input-X_A_init" class="concentrations">
</div>
<div class="form-row">
<label for="node-input-X_TS_init"><i class="fa fa-tag"></i> Initial total suspended solids [g TSS m-3]</label>
<input type="text" id="node-input-X_TS_init" class="concentrations">
</div>
<h2> Simulation parameters </h2>
<div class="form-row">
<label for="node-input-timeStep"><i class="fa fa-tag"></i> Time step [s]</label>
<input type="text" id="node-input-timeStep" placeholder="s">
</div>
<!-- Logger fields injected here -->
<div id="logger-fields-placeholder"></div>
<!-- Position fields will be injected here -->
<div id="position-fields-placeholder"></div>
</script>
<script type="text/html" data-help-name="advancedReactor">
<p>New reactor node</p>
</script>

26
reactor.js Normal file
View File

@@ -0,0 +1,26 @@
const nameOfNode = "advancedReactor"; // name of the node, should match file name and node type in Node-RED
const nodeClass = require('./src/nodeClass.js'); // node class
const { MenuManager } = require('generalFunctions');
module.exports = function (RED) {
// Register the node type
RED.nodes.registerType(nameOfNode, function (config) {
// Initialize the Node-RED node first
RED.nodes.createNode(this, config);
// Then create your custom class and attach it
this.nodeClass = new nodeClass(config, RED, this, nameOfNode);
});
const menuMgr = new MenuManager();
// Serve /advancedReactor/menu.js
RED.httpAdmin.get(`/${nameOfNode}/menu.js`, (req, res) => {
try {
const script = menuMgr.createEndpoint(nameOfNode, ['logger', 'position']);
res.type('application/javascript').send(script);
} catch (err) {
res.status(500).send(`// Error generating menu: ${err.message}`);
}
});
};

165
src/nodeClass.js Normal file
View File

@@ -0,0 +1,165 @@
const { Reactor_CSTR, Reactor_PFR } = require('./specificClass.js');
class nodeClass {
/**
* Node-RED node class for advanced-reactor.
* @param {object} uiConfig - Node-RED node configuration
* @param {object} RED - Node-RED runtime API
* @param {object} nodeInstance - Node-RED node instance
* @param {string} nameOfNode - Name of the node
*/
constructor(uiConfig, RED, nodeInstance, nameOfNode) {
// Preserve RED reference for HTTP endpoints if needed
this.node = nodeInstance;
this.RED = RED;
this.name = nameOfNode;
this.source = null;
this._loadConfig(uiConfig)
this._setupClass();
this._attachInputHandler();
this._registerChild();
this._startTickLoop();
this._attachCloseHandler();
}
/**
* Handle node-red input messages
*/
_attachInputHandler() {
this.node.on('input', (msg, send, done) => {
switch (msg.topic) {
case "clock":
this.source.updateState(msg.timestamp);
send([msg, null, null]);
break;
case "Fluent":
this.source.setInfluent = msg;
break;
case "OTR":
this.source.setOTR = msg;
break;
case "Temperature":
this.source.setTemperature = msg;
break;
case "Dispersion":
this.source.setDispersion = msg;
break;
case 'registerChild':
// Register this node as a parent of the child node
const childId = msg.payload;
const childObj = this.RED.nodes.getNode(childId);
this.source.childRegistrationUtils.registerChild(childObj.source, msg.positionVsParent);
break;
default:
console.log("Unknown topic: " + msg.topic);
}
if (done) {
done();
}
});
}
/**
* Parse node configuration
* @param {object} uiConfig Config set in UI in node-red
*/
_loadConfig(uiConfig) {
this.config = {
general: {
name: uiConfig.name || this.name,
id: this.node.id,
unit: null,
logging: {
enabled: uiConfig.enableLog,
logLevel: uiConfig.logLevel
}
},
functionality: {
positionVsParent: uiConfig.positionVsParent || 'atEquipment', // Default to 'atEquipment' if not specified
softwareType: "reactor" // should be set in config manager
},
reactor_type: uiConfig.reactor_type,
volume: parseFloat(uiConfig.volume),
length: parseFloat(uiConfig.length),
resolution_L: parseInt(uiConfig.resolution_L),
alpha: parseFloat(uiConfig.alpha),
n_inlets: parseInt(uiConfig.n_inlets),
kla: parseFloat(uiConfig.kla),
initialState: [
parseFloat(uiConfig.S_O_init),
parseFloat(uiConfig.S_I_init),
parseFloat(uiConfig.S_S_init),
parseFloat(uiConfig.S_NH_init),
parseFloat(uiConfig.S_N2_init),
parseFloat(uiConfig.S_NO_init),
parseFloat(uiConfig.S_HCO_init),
parseFloat(uiConfig.X_I_init),
parseFloat(uiConfig.X_S_init),
parseFloat(uiConfig.X_H_init),
parseFloat(uiConfig.X_STO_init),
parseFloat(uiConfig.X_A_init),
parseFloat(uiConfig.X_TS_init)
],
timeStep: parseFloat(uiConfig.timeStep)
}
}
/**
* Register this node as a child upstream and downstream.
* Delayed to avoid Node-RED startup race conditions.
*/
_registerChild() {
setTimeout(() => {
this.node.send([
null,
null,
{ topic: 'registerChild', payload: this.node.id, positionVsParent: this.config?.functionality?.positionVsParent || 'atEquipment' }
]);
}, 100);
}
/**
* Setup reactor class based on config
*/
_setupClass() {
let new_reactor;
switch (this.config.reactor_type) {
case "CSTR":
new_reactor = new Reactor_CSTR(this.config);
break;
case "PFR":
new_reactor = new Reactor_PFR(this.config);
break;
default:
console.warn("Unknown reactor type: " + uiConfig.reactor_type);
}
this.source = new_reactor; // protect from reassignment
this.node.source = this.source;
}
_startTickLoop() {
setTimeout(() => {
this._tickInterval = setInterval(() => this._tick(), 1000);
}, 1000);
}
_tick(){
this.node.send([this.source.getEffluent, null, null]);
}
_attachCloseHandler() {
this.node.on('close', (done) => {
clearInterval(this._tickInterval);
done();
});
}
}
module.exports = nodeClass;

View File

@@ -0,0 +1,211 @@
const math = require('mathjs')
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
*/
class ASM3 {
constructor() {
/**
* Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = {
// Hydrolysis
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.5, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 10., // saturation constant S_s [g COD m-3]
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 3., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.3, // aerobic respiration rate [d-1]
b_H_NO: 0.15, // anoxic respiration rate [d-1]
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.3, // maximum specific growth rate [d-1]
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.20, // aerobic respiration rate [d-1]
b_A_NO: 0.10 // anoxic respiration rate [d-1]
};
/**
* Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/**
* Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters.
* These parameters are used to adjust reaction rates based on temperature.
* @property {Object} temp_params - Temperature theta parameters
*/
this.temp_params = {
// Hydrolysis
theta_H: 0.04,
// Heterotrophs
theta_STO: 0.07,
theta_mu_H: 0.07,
theta_b_H_O: 0.07,
theta_b_H_NO: 0.07,
theta_b_STO_O: this._compute_theta(0.1, 0.3, 10, 20),
theta_b_STO_NO: this._compute_theta(0.05, 0.15, 10, 20),
// Autotrophs
theta_mu_A: 0.105,
theta_b_A_O: 0.105,
theta_b_A_NO: 0.105
};
this.stoi_matrix = this._initialise_stoi_matrix();
}
/**
* Initialises the stoichiometric matrix for ASM3.
* @returns {Array} - The stoichiometric matrix for ASM3. (2D array)
*/
_initialise_stoi_matrix() { // initialise stoichiometric matrix
const { f_SI, f_XI, Y_STO_O, Y_STO_NO, Y_H_O, Y_H_NO, Y_A, i_CODN, i_CODNO, i_NSI, i_NSS, i_NXI, i_NXS, i_NBM, i_TSXI, i_TSXS, i_TSBM, i_TSSTO, i_cNH, i_cNO } = this.stoi_params;
const stoi_matrix = Array(12);
// S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
stoi_matrix[0] = [0., f_SI, 1.-f_SI, i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI, 0., 0., (i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI)*i_cNH, 0., -1., 0., 0., 0., -i_TSXS];
stoi_matrix[1] = [-(1.-Y_STO_O), 0, -1., i_NSS, 0., 0., i_NSS*i_cNH, 0., 0., 0., Y_STO_O, 0., Y_STO_O*i_TSSTO];
stoi_matrix[2] = [0., 0., -1., i_NSS, -(1.-Y_STO_NO)/(i_CODNO-i_CODN), (1.-Y_STO_NO)/(i_CODNO-i_CODN), i_NSS*i_cNH + (1.-Y_STO_NO)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., Y_STO_NO, 0., Y_STO_NO*i_TSSTO];
stoi_matrix[3] = [-(1.-Y_H_O)/Y_H_O, 0., 0., -i_NBM, 0., 0., -i_NBM*i_cNH, 0., 0., 1., -1./Y_H_O, 0., i_TSBM-i_TSSTO/Y_H_O];
stoi_matrix[4] = [0., 0., 0., -i_NBM, -(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), (1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), -i_NBM*i_cNH+(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN))*i_cNO, 0., 0., 1., -1./Y_H_NO, 0., i_TSBM-i_TSSTO/Y_H_NO];
stoi_matrix[5] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
stoi_matrix[6] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
stoi_matrix[7] = [-1., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., -i_TSSTO];
stoi_matrix[8] = [0., 0., 0., 0., -1./(i_CODNO-i_CODN), 1./(i_CODNO-i_CODN), i_cNO/(i_CODNO-i_CODN), 0., 0., 0., -1., 0., -i_TSSTO];
stoi_matrix[9] = [1.+i_CODNO/Y_A, 0., 0., -1./Y_A-i_NBM, 0., 1./Y_A, (-1./Y_A-i_NBM)*i_cNH+i_cNO/Y_A, 0., 0., 0., 0., 1., i_TSBM];
stoi_matrix[10] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
stoi_matrix[11] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
return stoi_matrix[0].map((col, i) => stoi_matrix.map(row => row[i])); // transpose matrix
}
/**
* Computes the Monod equation rate value for a given concentration and half-saturation constant.
* @param {number} c - Concentration of reaction species.
* @param {number} K - Half-saturation constant for the reaction species.
* @returns {number} - Monod equation rate value for the given concentration and half-saturation constant.
*/
_monod(c, K) {
return c / (K + c);
}
/**
* Computes the inverse Monod equation rate value for a given concentration and half-saturation constant. Used for inhibition.
* @param {number} c - Concentration of reaction species.
* @param {number} K - Half-saturation constant for the reaction species.
* @returns {number} - Inverse Monod equation rate value for the given concentration and half-saturation constant.
*/
_inv_monod(c, K) {
return K / (K + c);
}
/**
* Adjust the rate parameter for temperature T using simplied Arrhenius equation based on rate constant at 20 degrees Celsius and theta parameter.
* @param {number} k - Rate constant at 20 degrees Celcius.
* @param {number} theta - Theta parameter.
* @param {number} T - Temperature in Celcius.
* @returns {number} - Adjusted rate parameter at temperature T based on the Arrhenius equation.
*/
_arrhenius(k, theta, T) {
return k * Math.exp(theta*(T-20));
}
/**
* Computes the temperature theta parameter based on two rate constants and their corresponding temperatures.
* @param {number} k1 - Rate constant at temperature T1.
* @param {number} k2 - Rate constant at temperature T2.
* @param {number} T1 - Temperature T1 in Celcius.
* @param {number} T2 - Temperature T2 in Celcius.
* @returns {number} - Theta parameter.
*/
_compute_theta(k1, k2, T1, T2) {
return Math.log(k1/k2)/(T1-T2);
}
/**
* Computes the reaction rates for each process reaction based on the current state and temperature.
* @param {Array} state - State vector containing concentrations of reaction species.
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
* @returns {Array} - Reaction rates for each process reaction.
*/
compute_rates(state, T = 20) {
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
const rates = Array(12);
const [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = state;
const { k_H, K_X, k_STO, nu_NO, K_O, K_NO, K_S, K_STO, mu_H_max, K_NH, K_HCO, b_H_O, b_H_NO, b_STO_O, b_STO_NO, mu_A_max, K_A_NH, K_A_O, K_A_HCO, b_A_O, b_A_NO } = this.kin_params;
const { theta_H, theta_STO, theta_mu_H, theta_b_H_O, theta_b_H_NO, theta_b_STO_O, theta_b_STO_NO, theta_mu_A, theta_b_A_O, theta_b_A_NO } = this.temp_params;
// Hydrolysis
rates[0] = X_H == 0 ? 0 : this._arrhenius(k_H, theta_H, T) * this._monod(X_S / X_H, K_X) * X_H;
// Heterotrophs
rates[1] = this._arrhenius(k_STO, theta_STO, T) * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
rates[2] = this._arrhenius(k_STO, theta_STO, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
rates[3] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
rates[4] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
rates[5] = this._arrhenius(b_H_O, theta_b_H_O, T) * this._monod(S_O, K_O) * X_H;
rates[6] = this._arrhenius(b_H_NO, theta_b_H_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
rates[7] = this._arrhenius(b_STO_O, theta_b_STO_O, T) * this._monod(S_O, K_O) * X_H;
rates[8] = this._arrhenius(b_STO_NO, theta_b_STO_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
// Autotrophs
rates[9] = this._arrhenius(mu_A_max, theta_mu_A, T) * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
rates[10] = this._arrhenius(b_A_O, theta_b_A_O, T) * this._monod(S_O, K_O) * X_A;
rates[11] = this._arrhenius(b_A_NO, theta_b_A_NO, T) * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
return rates;
}
/**
* Computes the change in concentrations of reaction species based on the current state and temperature.
* @param {Array} state - State vector containing concentrations of reaction species.
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
* @returns {Array} - Change in reaction species concentrations.
*/
compute_dC(state, T = 20) { // compute changes in concentrations
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
return math.multiply(this.stoi_matrix, this.compute_rates(state, T));
}
}
module.exports = ASM3;

View File

@@ -0,0 +1,211 @@
const math = require('mathjs')
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3).
*/
class ASM3 {
constructor() {
/**
* Kinetic parameters for ASM3 at 20 C.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = {
// Hydrolysis
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.6, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 2., // saturation constant S_s [g COD m-3]
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 2., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.2, // aerobic respiration rate [d-1]
b_H_NO: 0.1, // anoxic respiration rate [d-1]
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.0, // maximum specific growth rate [d-1]
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.15, // aerobic respiration rate [d-1]
b_A_NO: 0.05 // anoxic respiration rate [d-1]
};
/**
* Stoichiometric and composition parameters for ASM3.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/**
* Temperature theta parameters for ASM3.
* These parameters are used to adjust reaction rates based on temperature.
* @property {Object} temp_params - Temperature theta parameters
*/
this.temp_params = {
// Hydrolysis
theta_H: this._compute_theta(2, 3, 10, 20),
// Heterotrophs
theta_STO: this._compute_theta(2.5, 5, 10, 20),
theta_mu_H: this._compute_theta(1, 2, 10, 20),
theta_b_H_O: this._compute_theta(0.1, 0.2, 10, 20),
theta_b_H_NO: this._compute_theta(0.05, 0.1, 10, 20),
theta_b_STO_O: this._compute_theta(0.1, 0.2, 10, 20),
theta_b_STO_NO: this._compute_theta(0.05, 0.1, 10, 20),
// Autotrophs
theta_mu_A: this._compute_theta(0.35, 1, 10, 20),
theta_b_A_O: this._compute_theta(0.05, 0.15, 10, 20),
theta_b_A_NO: this._compute_theta(0.02, 0.05, 10, 20)
};
this.stoi_matrix = this._initialise_stoi_matrix();
}
/**
* Initialises the stoichiometric matrix for ASM3.
* @returns {Array} - The stoichiometric matrix for ASM3. (2D array)
*/
_initialise_stoi_matrix() { // initialise stoichiometric matrix
const { f_SI, f_XI, Y_STO_O, Y_STO_NO, Y_H_O, Y_H_NO, Y_A, i_CODN, i_CODNO, i_NSI, i_NSS, i_NXI, i_NXS, i_NBM, i_TSXI, i_TSXS, i_TSBM, i_TSSTO, i_cNH, i_cNO } = this.stoi_params;
const stoi_matrix = Array(12);
// S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
stoi_matrix[0] = [0., f_SI, 1.-f_SI, i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI, 0., 0., (i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI)*i_cNH, 0., -1., 0., 0., 0., -i_TSXS];
stoi_matrix[1] = [-(1.-Y_STO_O), 0, -1., i_NSS, 0., 0., i_NSS*i_cNH, 0., 0., 0., Y_STO_O, 0., Y_STO_O*i_TSSTO];
stoi_matrix[2] = [0., 0., -1., i_NSS, -(1.-Y_STO_NO)/(i_CODNO-i_CODN), (1.-Y_STO_NO)/(i_CODNO-i_CODN), i_NSS*i_cNH + (1.-Y_STO_NO)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., Y_STO_NO, 0., Y_STO_NO*i_TSSTO];
stoi_matrix[3] = [-(1.-Y_H_O)/Y_H_O, 0., 0., -i_NBM, 0., 0., -i_NBM*i_cNH, 0., 0., 1., -1./Y_H_O, 0., i_TSBM-i_TSSTO/Y_H_O];
stoi_matrix[4] = [0., 0., 0., -i_NBM, -(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), (1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), -i_NBM*i_cNH+(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN))*i_cNO, 0., 0., 1., -1./Y_H_NO, 0., i_TSBM-i_TSSTO/Y_H_NO];
stoi_matrix[5] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
stoi_matrix[6] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
stoi_matrix[7] = [-1., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., -i_TSSTO];
stoi_matrix[8] = [0., 0., 0., 0., -1./(i_CODNO-i_CODN), 1./(i_CODNO-i_CODN), i_cNO/(i_CODNO-i_CODN), 0., 0., 0., -1., 0., -i_TSSTO];
stoi_matrix[9] = [1.+i_CODNO/Y_A, 0., 0., -1./Y_A-i_NBM, 0., 1./Y_A, (-1./Y_A-i_NBM)*i_cNH+i_cNO/Y_A, 0., 0., 0., 0., 1., i_TSBM];
stoi_matrix[10] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
stoi_matrix[11] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
return stoi_matrix[0].map((col, i) => stoi_matrix.map(row => row[i])); // transpose matrix
}
/**
* Computes the Monod equation rate value for a given concentration and half-saturation constant.
* @param {number} c - Concentration of reaction species.
* @param {number} K - Half-saturation constant for the reaction species.
* @returns {number} - Monod equation rate value for the given concentration and half-saturation constant.
*/
_monod(c, K) {
return c / (K + c);
}
/**
* Computes the inverse Monod equation rate value for a given concentration and half-saturation constant. Used for inhibition.
* @param {number} c - Concentration of reaction species.
* @param {number} K - Half-saturation constant for the reaction species.
* @returns {number} - Inverse Monod equation rate value for the given concentration and half-saturation constant.
*/
_inv_monod(c, K) {
return K / (K + c);
}
/**
* Adjust the rate parameter for temperature T using simplied Arrhenius equation based on rate constant at 20 degrees Celsius and theta parameter.
* @param {number} k - Rate constant at 20 degrees Celcius.
* @param {number} theta - Theta parameter.
* @param {number} T - Temperature in Celcius.
* @returns {number} - Adjusted rate parameter at temperature T based on the Arrhenius equation.
*/
_arrhenius(k, theta, T) {
return k * Math.exp(theta*(T-20));
}
/**
* Computes the temperature theta parameter based on two rate constants and their corresponding temperatures.
* @param {number} k1 - Rate constant at temperature T1.
* @param {number} k2 - Rate constant at temperature T2.
* @param {number} T1 - Temperature T1 in Celcius.
* @param {number} T2 - Temperature T2 in Celcius.
* @returns {number} - Theta parameter.
*/
_compute_theta(k1, k2, T1, T2) {
return Math.log(k1/k2)/(T1-T2);
}
/**
* Computes the reaction rates for each process reaction based on the current state and temperature.
* @param {Array} state - State vector containing concentrations of reaction species.
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
* @returns {Array} - Reaction rates for each process reaction.
*/
compute_rates(state, T = 20) {
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
const rates = Array(12);
const [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = state;
const { k_H, K_X, k_STO, nu_NO, K_O, K_NO, K_S, K_STO, mu_H_max, K_NH, K_HCO, b_H_O, b_H_NO, b_STO_O, b_STO_NO, mu_A_max, K_A_NH, K_A_O, K_A_HCO, b_A_O, b_A_NO } = this.kin_params;
const { theta_H, theta_STO, theta_mu_H, theta_b_H_O, theta_b_H_NO, theta_b_STO_O, theta_b_STO_NO, theta_mu_A, theta_b_A_O, theta_b_A_NO } = this.temp_params;
// Hydrolysis
rates[0] = X_H == 0 ? 0 : this._arrhenius(k_H, theta_H, T) * this._monod(X_S / X_H, K_X) * X_H;
// Heterotrophs
rates[1] = this._arrhenius(k_STO, theta_STO, T) * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
rates[2] = this._arrhenius(k_STO, theta_STO, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
rates[3] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
rates[4] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
rates[5] = this._arrhenius(b_H_O, theta_b_H_O, T) * this._monod(S_O, K_O) * X_H;
rates[6] = this._arrhenius(b_H_NO, theta_b_H_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
rates[7] = this._arrhenius(b_STO_O, theta_b_STO_O, T) * this._monod(S_O, K_O) * X_H;
rates[8] = this._arrhenius(b_STO_NO, theta_b_STO_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
// Autotrophs
rates[9] = this._arrhenius(mu_A_max, theta_mu_A, T) * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
rates[10] = this._arrhenius(b_A_O, theta_b_A_O, T) * this._monod(S_O, K_O) * X_A;
rates[11] = this._arrhenius(b_A_NO, theta_b_A_NO, T) * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
return rates;
}
/**
* Computes the change in concentrations of reaction species based on the current state and temperature.
* @param {Array} state - State vector containing concentrations of reaction species.
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
* @returns {Array} - Change in reaction species concentrations.
*/
compute_dC(state, T = 20) { // compute changes in concentrations
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
return math.multiply(this.stoi_matrix, this.compute_rates(state, T));
}
}
module.exports = ASM3;

413
src/specificClass.js Normal file
View File

@@ -0,0 +1,413 @@
const ASM3 = require('./reaction_modules/asm3_class.js');
const { create, all, isArray } = require('mathjs');
const { assertNoNaN } = require('./utils.js');
const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions');
const EventEmitter = require('events');
const mathConfig = {
matrix: 'Array' // use Array as the matrix type
};
const math = create(all, mathConfig);
const S_O_INDEX = 0;
const NUM_SPECIES = 13;
const DEBUG = false;
class Reactor {
/**
* Reactor base class.
* @param {object} config - Configuration object containing reactor parameters.
*/
constructor(config) {
this.config = config;
// EVOLV stuff
this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name);
this.emitter = new EventEmitter();
this.measurements = new MeasurementContainer();
this.upstreamReactor = null;
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
this.asm = new ASM3();
this.volume = config.volume; // fluid volume reactor [m3]
this.Fs = Array(config.n_inlets).fill(0); // fluid debits per inlet [m3 d-1]
this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(NUM_SPECIES).fill(0)); // composition influents
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1 m-3]
this.temperature = 20; // temperature [C]
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
this.currentTime = Date.now(); // milliseconds since epoch [ms]
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step [d]
this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second
}
/**
* Setter for influent data.
* @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
*/
set setInfluent(input) {
let index_in = input.payload.inlet;
this.Fs[index_in] = input.payload.F;
this.Cs_in[index_in] = input.payload.C;
}
/**
* Setter for OTR (Oxygen Transfer Rate).
* @param {object} input - Input object (msg) containing payload with OTR value [g O2 d-1 m-3].
*/
set setOTR(input) {
this.OTR = input.payload;
}
/**
* Getter for effluent data.
* @returns {object} Effluent data object (msg), defaults to inlet 0.
*/
get getEffluent() { // getter for Effluent, defaults to inlet 0
if (isArray(this.state.at(-1))) {
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state.at(-1) }, timestamp: this.currentTime };
}
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state }, timestamp: this.currentTime };
}
/**
* Calculate the oxygen transfer rate (OTR) based on the dissolved oxygen concentration and temperature.
* @param {number} S_O - Dissolved oxygen concentration [g O2 m-3].
* @param {number} T - Temperature in Celsius, default to 20 C.
* @returns {number} - Calculated OTR [g O2 d-1 m-3].
*/
_calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
let S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
return this.kla * (S_O_sat - S_O);
}
/**
* Clip values in an array to zero.
* @param {Array} arr - Array of values to clip.
* @returns {Array} - New array with values clipped to zero.
*/
_arrayClip2Zero(arr) {
if (Array.isArray(arr)) {
return arr.map(x => this._arrayClip2Zero(x));
} else {
return arr < 0 ? 0 : arr;
}
}
registerChild(child, softwareType) {
switch (softwareType) {
case "measurement":
this.logger.debug(`Registering measurement child.`);
this._connectMeasurement(child);
break;
case "reactor":
this.logger.debug(`Registering reactor child.`);
this._connectReactor(child);
break;
default:
this.logger.error(`Unrecognized softwareType: ${softwareType}`);
}
}
_connectMeasurement(measurement) {
if (!measurement) {
this.logger.warn("Invalid measurement provided.");
return;
}
const position = measurement.config.functionality.positionVsParent;
const measurementType = measurement.config.asset.type;
const key = `${measurementType}_${position}`;
const eventName = `${measurementType}.measured.${position}`;
// Register event listener for measurement updates
this.measurements.emitter.on(eventName, (eventData) => {
this.logger.debug(`${position} ${measurementType} from ${eventData.childName}: ${eventData.value} ${eventData.unit}`);
// Store directly in parent's measurement container
this.measurements
.type(measurementType)
.variant("measured")
.position(position)
.value(eventData.value, eventData.timestamp, eventData.unit);
this._updateMeasurement(measurementType, eventData.value, position, eventData);
});
}
_connectReactor(reactor) {
if (!reactor) {
this.logger.warn("Invalid reactor provided.");
return;
}
this.upstreamReactor = reactor;
reactor.emitter.on("stateChange", (data) => {
this.logger.debug(`State change of upstream reactor detected.`);
this.updateState(data);
});
}
_updateMeasurement(measurementType, value, position, context) {
this.logger.debug(`---------------------- updating ${measurementType} ------------------ `);
switch (measurementType) {
case "temperature":
if (position == "atEquipment") {
this.temperature = value;
}
break;
default:
this.logger.error(`Type '${measurementType}' not recognized for measured update.`);
return;
}
}
/**
* Update the reactor state based on the new time.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
updateState(newTime = Date.now()) { // expect update with timestamp
const day2ms = 1000 * 60 * 60 * 24;
if (this.upstreamReactor) {
this.setInfluent = this.upstreamReactor.getEffluent;
}
let n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*day2ms));
if (n_iter) {
let n = 0;
while (n < n_iter) {
this.tick(this.timeStep);
n += 1;
}
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
this.emitter.emit("stateChange", this.currentTime);
}
}
}
class Reactor_CSTR extends Reactor {
/**
* Reactor_CSTR class for Continuous Stirred Tank Reactor.
* @param {object} config - Configuration object containing reactor parameters.
*/
constructor(config) {
super(config);
this.state = config.initialState;
}
/**
* Tick the reactor state using the forward Euler method.
* @param {number} time_step - Time step for the simulation [d].
* @returns {Array} - New reactor state.
*/
tick(time_step) { // tick reactor state using forward Euler method
const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0];
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
const reaction = this.asm.compute_dC(this.state, this.temperature);
const transfer = Array(NUM_SPECIES).fill(0.0);
transfer[S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
if(DEBUG){
assertNoNaN(dC_total, "change in state");
assertNoNaN(this.state, "new state");
}
return this.state;
}
}
class Reactor_PFR extends Reactor {
/**
* Reactor_PFR class for Plug Flow Reactor.
* @param {object} config - Configuration object containing reactor parameters.
*/
constructor(config) {
super(config);
this.length = config.length; // reactor length [m]
this.n_x = config.resolution_L; // number of slices
this.d_x = this.length / this.n_x;
this.A = this.volume / this.length; // crosssectional area [m2]
this.alpha = config.alpha;
this.state = Array.from(Array(this.n_x), () => config.initialState.slice())
this.D = 0.0; // axial dispersion [m2 d-1]
this.D_op = this._makeDoperator(true, true);
assertNoNaN(this.D_op, "Derivative operator");
this.D2_op = this._makeD2operator();
assertNoNaN(this.D2_op, "Second derivative operator");
}
/**
* Setter for axial dispersion.
* @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1].
*/
set setDispersion(input) {
this.D = input.payload;
}
updateState(newTime) {
super.updateState(newTime);
let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
let Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
(Pe_local >= 2) && this.logger.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
(Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
if(DEBUG) {
console.log("Inlet state max " + math.max(this.state[0]))
console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A));
console.log("Pe local " + Pe_local);
console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x));
console.log("Co D " + Co_D);
}
}
/**
* Tick the reactor state using explicit finite difference method.
* @param {number} time_step - Time step for the simulation [d].
* @returns {Array} - New reactor state.
*/
tick(time_step) {
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.state);
const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
const transfer = Array.from(Array(this.n_x), () => new Array(NUM_SPECIES).fill(0));
if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
for (let i = 1; i < this.n_x - 1; i++) {
transfer[i][S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
}
} else {
for (let i = 1; i < this.n_x - 1; i++) {
transfer[i][S_O_INDEX] = this._calcOTR(this.state[i][S_O_INDEX], this.temperature) * this.n_x/(this.n_x-2);
}
}
const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step);
const stateNew = math.add(this.state, dC_total);
this._applyBoundaryConditions(stateNew);
if (DEBUG) {
assertNoNaN(dispersion, "dispersion");
assertNoNaN(advection, "advection");
assertNoNaN(reaction, "reaction");
assertNoNaN(dC_total, "change in state");
assertNoNaN(stateNew, "new state post BC");
}
this.state = this._arrayClip2Zero(stateNew);
return stateNew;
}
_updateMeasurement(measurementType, value, position, context) {
switch(measurementType) {
case "oxygen":
grid_pos = Math.round(position * this.n_x);
this.state[grid_pos][S_O_INDEX] = value; // naive approach for reconciling measurements and simulation
break;
}
super._updateMeasurement(measurementType, value, position, context);
}
/**
* Apply boundary conditions to the reactor state.
* for inlet, apply generalised Danckwerts BC, if there is not flow, apply Neumann BC with no flux
* for outlet, apply regular Danckwerts BC (Neumann BC with no flux)
* @param {Array} state - Current reactor state without enforced BCs.
*/
_applyBoundaryConditions(state) {
if (math.sum(this.Fs) > 0) { // Danckwerts BC
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
const BC_dispersion_term = (1-this.alpha)*this.D*this.A/(math.sum(this.Fs)*this.d_x);
state[0] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, state[1])));
} else {
state[0] = state[1];
}
// Neumann BC (no flux)
state[this.n_x-1] = state[this.n_x-2];
}
/**
* Create finite difference first derivative operator.
* @param {boolean} central - Use central difference scheme if true, otherwise use upwind scheme.
* @param {boolean} higher_order - Use higher order scheme if true, otherwise use first order scheme.
* @returns {Array} - First derivative operator matrix.
*/
_makeDoperator(central = false, higher_order = false) { // create gradient operator
if (higher_order) {
if (central) {
const I = math.resize(math.diag(Array(this.n_x).fill(1/12), -2), [this.n_x, this.n_x]);
const A = math.resize(math.diag(Array(this.n_x).fill(-2/3), -1), [this.n_x, this.n_x]);
const B = math.resize(math.diag(Array(this.n_x).fill(2/3), 1), [this.n_x, this.n_x]);
const C = math.resize(math.diag(Array(this.n_x).fill(-1/12), 2), [this.n_x, this.n_x]);
const D = math.add(I, A, B, C);
const NearBoundary = Array(this.n_x).fill(0.0);
NearBoundary[0] = -1/4;
NearBoundary[1] = -5/6;
NearBoundary[2] = 3/2;
NearBoundary[3] = -1/2;
NearBoundary[4] = 1/12;
D[1] = NearBoundary;
NearBoundary.reverse();
D[this.n_x-2] = math.multiply(-1, NearBoundary);
D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
D[this.n_x-1] = Array(this.n_x).fill(0);
return D;
} else {
throw new Error("Upwind higher order method not implemented! Use central scheme instead.");
}
} else {
const I = math.resize(math.diag(Array(this.n_x).fill(1 / (1+central)), central), [this.n_x, this.n_x]);
const A = math.resize(math.diag(Array(this.n_x).fill(-1 / (1+central)), -1), [this.n_x, this.n_x]);
const D = math.add(I, A);
D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
D[this.n_x-1] = Array(this.n_x).fill(0);
return D;
}
}
/**
* Create central finite difference second derivative operator.
* @returns {Array} - Second derivative operator matrix.
*/
_makeD2operator() { // create the central second derivative operator
const I = math.diag(Array(this.n_x).fill(-2), 0);
const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]);
const B = math.resize(math.diag(Array(this.n_x).fill(1), -1), [this.n_x, this.n_x]);
const D2 = math.add(I, A, B);
D2[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
D2[this.n_x - 1] = Array(this.n_x).fill(0);
return D2;
}
}
module.exports = { Reactor_CSTR, Reactor_PFR };
// DEBUG
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
// const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state);
// Reactor.Cs_in[0] = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.];
// Reactor.Fs[0] = 10;
// Reactor.D = 0.01;
// let N = 0;
// while (N < 5000) {
// console.log(Reactor.tick(0.001));
// N += 1;
// }

18
src/utils.js Normal file
View File

@@ -0,0 +1,18 @@
/**
* Assert that no NaN values are present in an array.
* @param {Array} arr
* @param {string} label
*/
function assertNoNaN(arr, label = "array") {
if (Array.isArray(arr)) {
for (const el of arr) {
assertNoNaN(el, label);
}
} else {
if (Number.isNaN(arr)) {
throw new Error(`NaN detected in ${label}!`);
}
}
}
module.exports = { assertNoNaN };