Compare commits
45 Commits
9147a3f7d0
...
dev-Pieter
| Author | SHA1 | Date | |
|---|---|---|---|
| 033a56a9e0 | |||
| dd70b8c890 | |||
| 3d93f2a7b9 | |||
| cc89833530 | |||
| f3bbf63602 | |||
| 70af0885e3 | |||
| dbfc4a81b2 | |||
| f14e2c8d8e | |||
| 7e34b9aa71 | |||
| 2b37163a8a | |||
| a106276ca6 | |||
| ffb4080f14 | |||
| 260d04b96f | |||
| 9f060d2dd0 | |||
| b0dd9b6a8f | |||
| 5c41dc44a3 | |||
| 4578667a96 | |||
| 3828e43c12 | |||
| e6923f2916 | |||
| 4680b98418 | |||
| eb787ec47f | |||
|
|
6de4f9ec3e | ||
|
|
7b38c2f51a | ||
|
|
018215934e | ||
|
|
3a820df7f2 | ||
|
|
670c4deacb | ||
|
|
f44bac9aab | ||
| 1dc9cd0031 | |||
| 2a520be33b | |||
| baecf2f599 | |||
| cd3a19e66f | |||
| 3aea0e55c4 | |||
| 442ddc60ed | |||
| d9511dc3c7 | |||
| 993482f8c0 | |||
| 5f4ebdc2af | |||
| 6c79d0ef9b | |||
| 04306d0996 | |||
| 2bc244cae7 | |||
| 254f9eec5a | |||
| 109fd182df | |||
| bf5f265a76 | |||
| 905674ce58 | |||
| da1cff55ba | |||
| ea35038aa1 |
191
LICENSE
191
LICENSE
@@ -1,9 +1,190 @@
|
||||
MIT License
|
||||
EUROPEAN UNION PUBLIC LICENCE v. 1.2
|
||||
EUPL © the European Union 2007, 2016
|
||||
|
||||
Copyright (c) 2025 p.vanderwilt
|
||||
This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined below) which is provided under the
|
||||
terms of this Licence. Any use of the Work, other than as authorised under this Licence is prohibited (to the extent such
|
||||
use is covered by a right of the copyright holder of the Work).
|
||||
The Work is provided under the terms of this Licence when the Licensor (as defined below) has placed the following
|
||||
notice immediately following the copyright notice for the Work:
|
||||
Licensed under the EUPL
|
||||
or has expressed by any other means his willingness to license under the EUPL.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||
1.Definitions
|
||||
In this Licence, the following terms have the following meaning:
|
||||
— ‘The Licence’:this Licence.
|
||||
— ‘The Original Work’:the work or software distributed or communicated by the Licensor under this Licence, available
|
||||
as Source Code and also as Executable Code as the case may be.
|
||||
— ‘Derivative Works’:the works or software that could be created by the Licensee, based upon the Original Work or
|
||||
modifications thereof. This Licence does not define the extent of modification or dependence on the Original Work
|
||||
required in order to classify a work as a Derivative Work; this extent is determined by copyright law applicable in
|
||||
the country mentioned in Article 15.
|
||||
— ‘The Work’:the Original Work or its Derivative Works.
|
||||
— ‘The Source Code’:the human-readable form of the Work which is the most convenient for people to study and
|
||||
modify.
|
||||
— ‘The Executable Code’:any code which has generally been compiled and which is meant to be interpreted by
|
||||
a computer as a program.
|
||||
— ‘The Licensor’:the natural or legal person that distributes or communicates the Work under the Licence.
|
||||
— ‘Contributor(s)’:any natural or legal person who modifies the Work under the Licence, or otherwise contributes to
|
||||
the creation of a Derivative Work.
|
||||
— ‘The Licensee’ or ‘You’:any natural or legal person who makes any usage of the Work under the terms of the
|
||||
Licence.
|
||||
— ‘Distribution’ or ‘Communication’:any act of selling, giving, lending, renting, distributing, communicating,
|
||||
transmitting, or otherwise making available, online or offline, copies of the Work or providing access to its essential
|
||||
functionalities at the disposal of any other natural or legal person.
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||||
2.Scope of the rights granted by the Licence
|
||||
The Licensor hereby grants You a worldwide, royalty-free, non-exclusive, sublicensable licence to do the following, for
|
||||
the duration of copyright vested in the Original Work:
|
||||
— use the Work in any circumstance and for all usage,
|
||||
— reproduce the Work,
|
||||
— modify the Work, and make Derivative Works based upon the Work,
|
||||
— communicate to the public, including the right to make available or display the Work or copies thereof to the public
|
||||
and perform publicly, as the case may be, the Work,
|
||||
— distribute the Work or copies thereof,
|
||||
— lend and rent the Work or copies thereof,
|
||||
— sublicense rights in the Work or copies thereof.
|
||||
Those rights can be exercised on any media, supports and formats, whether now known or later invented, as far as the
|
||||
applicable law permits so.
|
||||
In the countries where moral rights apply, the Licensor waives his right to exercise his moral right to the extent allowed
|
||||
by law in order to make effective the licence of the economic rights here above listed.
|
||||
The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to any patents held by the Licensor, to the
|
||||
extent necessary to make use of the rights granted on the Work under this Licence.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
3.Communication of the Source Code
|
||||
The Licensor may provide the Work either in its Source Code form, or as Executable Code. If the Work is provided as
|
||||
Executable Code, the Licensor provides in addition a machine-readable copy of the Source Code of the Work along with
|
||||
each copy of the Work that the Licensor distributes or indicates, in a notice following the copyright notice attached to
|
||||
the Work, a repository where the Source Code is easily and freely accessible for as long as the Licensor continues to
|
||||
distribute or communicate the Work.
|
||||
|
||||
4.Limitations on copyright
|
||||
Nothing in this Licence is intended to deprive the Licensee of the benefits from any exception or limitation to the
|
||||
exclusive rights of the rights owners in the Work, of the exhaustion of those rights or of other applicable limitations
|
||||
thereto.
|
||||
|
||||
5.Obligations of the Licensee
|
||||
The grant of the rights mentioned above is subject to some restrictions and obligations imposed on the Licensee. Those
|
||||
obligations are the following:
|
||||
|
||||
Attribution right: The Licensee shall keep intact all copyright, patent or trademarks notices and all notices that refer to
|
||||
the Licence and to the disclaimer of warranties. The Licensee must include a copy of such notices and a copy of the
|
||||
Licence with every copy of the Work he/she distributes or communicates. The Licensee must cause any Derivative Work
|
||||
to carry prominent notices stating that the Work has been modified and the date of modification.
|
||||
|
||||
Copyleft clause: If the Licensee distributes or communicates copies of the Original Works or Derivative Works, this
|
||||
Distribution or Communication will be done under the terms of this Licence or of a later version of this Licence unless
|
||||
the Original Work is expressly distributed only under this version of the Licence — for example by communicating
|
||||
‘EUPL v. 1.2 only’. The Licensee (becoming Licensor) cannot offer or impose any additional terms or conditions on the
|
||||
Work or Derivative Work that alter or restrict the terms of the Licence.
|
||||
|
||||
Compatibility clause: If the Licensee Distributes or Communicates Derivative Works or copies thereof based upon both
|
||||
the Work and another work licensed under a Compatible Licence, this Distribution or Communication can be done
|
||||
under the terms of this Compatible Licence. For the sake of this clause, ‘Compatible Licence’ refers to the licences listed
|
||||
in the appendix attached to this Licence. Should the Licensee's obligations under the Compatible Licence conflict with
|
||||
his/her obligations under this Licence, the obligations of the Compatible Licence shall prevail.
|
||||
|
||||
Provision of Source Code: When distributing or communicating copies of the Work, the Licensee will provide
|
||||
a machine-readable copy of the Source Code or indicate a repository where this Source will be easily and freely available
|
||||
for as long as the Licensee continues to distribute or communicate the Work.
|
||||
Legal Protection: This Licence does not grant permission to use the trade names, trademarks, service marks, or names
|
||||
of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and
|
||||
reproducing the content of the copyright notice.
|
||||
|
||||
6.Chain of Authorship
|
||||
The original Licensor warrants that the copyright in the Original Work granted hereunder is owned by him/her or
|
||||
licensed to him/her and that he/she has the power and authority to grant the Licence.
|
||||
Each Contributor warrants that the copyright in the modifications he/she brings to the Work are owned by him/her or
|
||||
licensed to him/her and that he/she has the power and authority to grant the Licence.
|
||||
Each time You accept the Licence, the original Licensor and subsequent Contributors grant You a licence to their contributions
|
||||
to the Work, under the terms of this Licence.
|
||||
|
||||
7.Disclaimer of Warranty
|
||||
The Work is a work in progress, which is continuously improved by numerous Contributors. It is not a finished work
|
||||
and may therefore contain defects or ‘bugs’ inherent to this type of development.
|
||||
For the above reason, the Work is provided under the Licence on an ‘as is’ basis and without warranties of any kind
|
||||
concerning the Work, including without limitation merchantability, fitness for a particular purpose, absence of defects or
|
||||
errors, accuracy, non-infringement of intellectual property rights other than copyright as stated in Article 6 of this
|
||||
Licence.
|
||||
This disclaimer of warranty is an essential part of the Licence and a condition for the grant of any rights to the Work.
|
||||
|
||||
8.Disclaimer of Liability
|
||||
Except in the cases of wilful misconduct or damages directly caused to natural persons, the Licensor will in no event be
|
||||
liable for any direct or indirect, material or moral, damages of any kind, arising out of the Licence or of the use of the
|
||||
Work, including without limitation, damages for loss of goodwill, work stoppage, computer failure or malfunction, loss
|
||||
of data or any commercial damage, even if the Licensor has been advised of the possibility of such damage. However,
|
||||
the Licensor will be liable under statutory product liability laws as far such laws apply to the Work.
|
||||
|
||||
9.Additional agreements
|
||||
While distributing the Work, You may choose to conclude an additional agreement, defining obligations or services
|
||||
consistent with this Licence. However, if accepting obligations, You may act only on your own behalf and on your sole
|
||||
responsibility, not on behalf of the original Licensor or any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against such Contributor by
|
||||
the fact You have accepted any warranty or additional liability.
|
||||
|
||||
10.Acceptance of the Licence
|
||||
The provisions of this Licence can be accepted by clicking on an icon ‘I agree’ placed under the bottom of a window
|
||||
displaying the text of this Licence or by affirming consent in any other similar way, in accordance with the rules of
|
||||
applicable law. Clicking on that icon indicates your clear and irrevocable acceptance of this Licence and all of its terms
|
||||
and conditions.
|
||||
Similarly, you irrevocably accept this Licence and all of its terms and conditions by exercising any rights granted to You
|
||||
by Article 2 of this Licence, such as the use of the Work, the creation by You of a Derivative Work or the Distribution
|
||||
or Communication by You of the Work or copies thereof.
|
||||
|
||||
11.Information to the public
|
||||
In case of any Distribution or Communication of the Work by means of electronic communication by You (for example,
|
||||
by offering to download the Work from a remote location) the distribution channel or media (for example, a website)
|
||||
must at least provide to the public the information requested by the applicable law regarding the Licensor, the Licence
|
||||
and the way it may be accessible, concluded, stored and reproduced by the Licensee.
|
||||
|
||||
12.Termination of the Licence
|
||||
The Licence and the rights granted hereunder will terminate automatically upon any breach by the Licensee of the terms
|
||||
of the Licence.
|
||||
Such a termination will not terminate the licences of any person who has received the Work from the Licensee under
|
||||
the Licence, provided such persons remain in full compliance with the Licence.
|
||||
|
||||
13.Miscellaneous
|
||||
Without prejudice of Article 9 above, the Licence represents the complete agreement between the Parties as to the
|
||||
Work.
|
||||
If any provision of the Licence is invalid or unenforceable under applicable law, this will not affect the validity or
|
||||
enforceability of the Licence as a whole. Such provision will be construed or reformed so as necessary to make it valid
|
||||
and enforceable.
|
||||
The European Commission may publish other linguistic versions or new versions of this Licence or updated versions of
|
||||
the Appendix, so far this is required and reasonable, without reducing the scope of the rights granted by the Licence.
|
||||
New versions of the Licence will be published with a unique version number.
|
||||
All linguistic versions of this Licence, approved by the European Commission, have identical value. Parties can take
|
||||
advantage of the linguistic version of their choice.
|
||||
|
||||
14.Jurisdiction
|
||||
Without prejudice to specific agreement between parties,
|
||||
— any litigation resulting from the interpretation of this License, arising between the European Union institutions,
|
||||
bodies, offices or agencies, as a Licensor, and any Licensee, will be subject to the jurisdiction of the Court of Justice
|
||||
of the European Union, as laid down in article 272 of the Treaty on the Functioning of the European Union,
|
||||
— any litigation arising between other parties and resulting from the interpretation of this License, will be subject to
|
||||
the exclusive jurisdiction of the competent court where the Licensor resides or conducts its primary business.
|
||||
|
||||
15.Applicable Law
|
||||
Without prejudice to specific agreement between parties,
|
||||
— this Licence shall be governed by the law of the European Union Member State where the Licensor has his seat,
|
||||
resides or has his registered office,
|
||||
— this licence shall be governed by Belgian law if the Licensor has no seat, residence or registered office inside
|
||||
a European Union Member State.
|
||||
|
||||
|
||||
Appendix
|
||||
|
||||
‘Compatible Licences’ according to Article 5 EUPL are:
|
||||
— GNU General Public License (GPL) v. 2, v. 3
|
||||
— GNU Affero General Public License (AGPL) v. 3
|
||||
— Open Software License (OSL) v. 2.1, v. 3.0
|
||||
— Eclipse Public License (EPL) v. 1.0
|
||||
— CeCILL v. 2.0, v. 2.1
|
||||
— Mozilla Public Licence (MPL) v. 2
|
||||
— GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3
|
||||
— Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for works other than software
|
||||
— European Union Public Licence (EUPL) v. 1.1, v. 1.2
|
||||
— Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong Reciprocity (LiLiQ-R+).
|
||||
|
||||
The European Commission may update this Appendix to later versions of the above licences without producing
|
||||
a new version of the EUPL, as long as they provide the rights granted in Article 2 of this Licence and protect the
|
||||
covered Source Code from exclusive appropriation.
|
||||
All other changes or additions to this Appendix require the production of a new EUPL version.
|
||||
|
||||
18
README.md
18
README.md
@@ -1,3 +1,17 @@
|
||||
# asm3
|
||||
# reactor
|
||||
|
||||
Reactor: Advanced Hydraulic Tank & Biological Process Simulator
|
||||
|
||||
A comprehensive reactor class for wastewater treatment simulation featuring plug flow hydraulics, ASM1-ASM3 biological modeling, and multi-sectional concentration tracking. Implements hydraulic retention time calculations, dispersion modeling, and real-time biological reaction kinetics for accurate process simulation.
|
||||
|
||||
Key Features:
|
||||
|
||||
Plug Flow Hydraulics: Multi-section reactor with configurable sectioning factor and dispersion modeling
|
||||
ASM1 Integration: Complete biological nutrient removal modeling with 13 state variables (COD, nitrogen, phosphorus)
|
||||
Dynamic Volume Control: Automatic section management with overflow handling and retention time calculations
|
||||
Oxygen Transfer: Saturation-limited O2 transfer with Fick's law slowdown effects and solubility curves
|
||||
Real-time Kinetics: Continuous biological reaction rate calculations with configurable time acceleration
|
||||
Weighted Averaging: Volume-based concentration mixing for accurate mass balance calculations
|
||||
Child Registration: Integration with diffuser systems and upstream/downstream reactor networks
|
||||
Supports complex biological treatment train modeling with temperature compensation, sludge calculations, and comprehensive process monitoring for wastewater treatment plant optimization and regulatory compliance.
|
||||
|
||||
Implementation of the asm3 model (doi:10.1016/S0273-1223(98)00785-9)
|
||||
@@ -1,57 +0,0 @@
|
||||
<script type="text/javascript">
|
||||
RED.nodes.registerType("recirculation-pump", {
|
||||
category: "WWTP",
|
||||
color: "#e4a363",
|
||||
defaults: {
|
||||
name: { value: "" },
|
||||
F2: { value: 0, required: true },
|
||||
inlet: { value: 1, required: true }
|
||||
},
|
||||
inputs: 1,
|
||||
outputs: 2,
|
||||
outputLabels: ["Main effluent", "Recirculation effluent"],
|
||||
icon: "font-awesome/fa-random",
|
||||
label: function() {
|
||||
return this.name || "Recirculation pump";
|
||||
},
|
||||
oneditprepare: function() {
|
||||
$("#node-input-F2").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-inlet").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
},
|
||||
oneditsave: function() {
|
||||
let debit = parseFloat($("#node-input-F2").typedInput("value"));
|
||||
if (isNaN(debit) || debit < 0) {
|
||||
RED.notify("Debit is not set correctly", {type: "error"});
|
||||
}
|
||||
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
|
||||
if (inlet < 1) {
|
||||
RED.notify("Number of inlets not set correctly", {type: "error"});
|
||||
}
|
||||
}
|
||||
});
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-template-name="recirculation-pump">
|
||||
<div class="form-row">
|
||||
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
|
||||
<input type="text" id="node-input-name" placeholder="Name">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-F2"><i class="fa fa-tag"></i> Recirculation debit [m3 d-1]</label>
|
||||
<input type="text" id="node-input-F2" placeholder="m3 s-1">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet recirculation</label>
|
||||
<input type="text" id="node-input-inlet" placeholder="#">
|
||||
</div>
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-help-name="recirculation-pump">
|
||||
<p>Recirculation-pump for splitting streams</p>
|
||||
</script>
|
||||
@@ -1,40 +0,0 @@
|
||||
module.exports = function(RED) {
|
||||
function recirculation(config) {
|
||||
RED.nodes.createNode(this, config);
|
||||
var node = this;
|
||||
|
||||
let name = config.name;
|
||||
let F2 = parseFloat(config.F2);
|
||||
const inlet_F2 = parseInt(config.inlet);
|
||||
|
||||
node.on('input', function(msg, send, done) {
|
||||
switch (msg.topic) {
|
||||
case "Fluent":
|
||||
// conserve volume flow debit
|
||||
let F_in = msg.payload.F;
|
||||
let F1 = Math.max(F_in - F2, 0);
|
||||
let F2_corr = F_in < F2 ? F_in : F2;
|
||||
|
||||
let msg_F1 = structuredClone(msg);
|
||||
msg_F1.payload.F = F1;
|
||||
|
||||
let msg_F2 = {...msg};
|
||||
msg_F2.payload.F = F2_corr;
|
||||
msg_F2.payload.inlet = inlet_F2;
|
||||
|
||||
send([msg_F1, msg_F2]);
|
||||
break;
|
||||
case "clock":
|
||||
break;
|
||||
default:
|
||||
console.log("Unknown topic: " + msg.topic);
|
||||
}
|
||||
|
||||
if (done) {
|
||||
done();
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
RED.nodes.registerType("recirculation-pump", recirculation);
|
||||
};
|
||||
@@ -1,57 +0,0 @@
|
||||
<script type="text/javascript">
|
||||
RED.nodes.registerType("settling-basin", {
|
||||
category: "WWTP",
|
||||
color: "#e4a363",
|
||||
defaults: {
|
||||
name: { value: "" },
|
||||
TS_set: { value: 0.1, required: true },
|
||||
inlet: { value: 1, required: true }
|
||||
},
|
||||
inputs: 1,
|
||||
outputs: 2,
|
||||
outputLabels: ["Main effluent", "Sludge effluent"],
|
||||
icon: "font-awesome/fa-random",
|
||||
label: function() {
|
||||
return this.name || "Settling basin";
|
||||
},
|
||||
oneditprepare: function() {
|
||||
$("#node-input-TS_set").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-inlet").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
},
|
||||
oneditsave: function() {
|
||||
let TS_set = parseFloat($("#node-input-TS_set").typedInput("value"));
|
||||
if (isNaN(TS_set) || TS_set < 0) {
|
||||
RED.notify("TS is not set correctly", {type: "error"});
|
||||
}
|
||||
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
|
||||
if (inlet < 1) {
|
||||
RED.notify("Number of inlets not set correctly", {type: "error"});
|
||||
}
|
||||
}
|
||||
});
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-template-name="settling-basin">
|
||||
<div class="form-row">
|
||||
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
|
||||
<input type="text" id="node-input-name" placeholder="Name">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-TS_set"><i class="fa fa-tag"></i> Total Solids set point [g m-3]</label>
|
||||
<input type="text" id="node-input-TS_set" placeholder="">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet return line</label>
|
||||
<input type="text" id="node-input-inlet" placeholder="#">
|
||||
</div>
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-help-name="settling-basin">
|
||||
<p>Settling tank</p>
|
||||
</script>
|
||||
@@ -1,57 +0,0 @@
|
||||
module.exports = function(RED) {
|
||||
function settler(config) {
|
||||
RED.nodes.createNode(this, config);
|
||||
var node = this;
|
||||
|
||||
let name = config.name;
|
||||
let TS_set = parseFloat(config.TS_set);
|
||||
const inlet_sludge = parseInt(config.inlet);
|
||||
|
||||
node.on('input', function(msg, send, done) {
|
||||
switch (msg.topic) {
|
||||
case "Fluent":
|
||||
// conserve volume flow debit
|
||||
let F_in = msg.payload.F;
|
||||
let C_in = msg.payload.C;
|
||||
let F2 = (F_in * C_in[12]) / TS_set;
|
||||
|
||||
let F1 = Math.max(F_in - F2, 0);
|
||||
let F2_corr = F_in < F2 ? F_in : F2;
|
||||
|
||||
let msg_F1 = structuredClone(msg);
|
||||
msg_F1.payload.F = F1;
|
||||
msg_F1.payload.C[7] = 0;
|
||||
msg_F1.payload.C[8] = 0;
|
||||
msg_F1.payload.C[9] = 0;
|
||||
msg_F1.payload.C[10] = 0;
|
||||
msg_F1.payload.C[11] = 0;
|
||||
msg_F1.payload.C[12] = 0;
|
||||
|
||||
let msg_F2 = {...msg};
|
||||
msg_F2.payload.F = F2_corr;
|
||||
if (F2_corr > 0) {
|
||||
msg_F2.payload.C[7] = F_in * C_in[7] / F2;
|
||||
msg_F2.payload.C[8] = F_in * C_in[8] / F2;
|
||||
msg_F2.payload.C[9] = F_in * C_in[9] / F2;
|
||||
msg_F2.payload.C[10] = F_in * C_in[10] / F2;
|
||||
msg_F2.payload.C[11] = F_in * C_in[11] / F2;
|
||||
msg_F2.payload.C[12] = F_in * C_in[12] / F2;
|
||||
}
|
||||
msg_F2.payload.inlet = inlet_sludge;
|
||||
|
||||
send([msg_F1, msg_F2]);
|
||||
break;
|
||||
case "clock":
|
||||
break;
|
||||
default:
|
||||
console.log("Unknown topic: " + msg.topic);
|
||||
}
|
||||
|
||||
if (done) {
|
||||
done();
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
RED.nodes.registerType("settling-basin", settler);
|
||||
};
|
||||
File diff suppressed because it is too large
Load Diff
119
package-lock.json
generated
119
package-lock.json
generated
@@ -1,119 +0,0 @@
|
||||
{
|
||||
"name": "asm3",
|
||||
"version": "0.0.1",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "asm3",
|
||||
"version": "0.0.1",
|
||||
"license": "SEE LICENSE",
|
||||
"dependencies": {
|
||||
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git#fix-missing-references",
|
||||
"mathjs": "^14.5.2"
|
||||
}
|
||||
},
|
||||
"node_modules/@babel/runtime": {
|
||||
"version": "7.28.3",
|
||||
"resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.28.3.tgz",
|
||||
"integrity": "sha512-9uIQ10o0WGdpP6GDhXcdOJPJuDgFtIDtN/9+ArJQ2NAfAmiuhTQdzkaTGR33v43GYS2UrSA0eX2pPPHoFVvpxA==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=6.9.0"
|
||||
}
|
||||
},
|
||||
"node_modules/complex.js": {
|
||||
"version": "2.4.2",
|
||||
"resolved": "https://registry.npmjs.org/complex.js/-/complex.js-2.4.2.tgz",
|
||||
"integrity": "sha512-qtx7HRhPGSCBtGiST4/WGHuW+zeaND/6Ld+db6PbrulIB1i2Ev/2UPiqcmpQNPSyfBKraC0EOvOKCB5dGZKt3g==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": "*"
|
||||
},
|
||||
"funding": {
|
||||
"type": "github",
|
||||
"url": "https://github.com/sponsors/rawify"
|
||||
}
|
||||
},
|
||||
"node_modules/decimal.js": {
|
||||
"version": "10.6.0",
|
||||
"resolved": "https://registry.npmjs.org/decimal.js/-/decimal.js-10.6.0.tgz",
|
||||
"integrity": "sha512-YpgQiITW3JXGntzdUmyUR1V812Hn8T1YVXhCu+wO3OpS4eU9l4YdD3qjyiKdV6mvV29zapkMeD390UVEf2lkUg==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/escape-latex": {
|
||||
"version": "1.2.0",
|
||||
"resolved": "https://registry.npmjs.org/escape-latex/-/escape-latex-1.2.0.tgz",
|
||||
"integrity": "sha512-nV5aVWW1K0wEiUIEdZ4erkGGH8mDxGyxSeqPzRNtWP7ataw+/olFObw7hujFWlVjNsaDFw5VZ5NzVSIqRgfTiw==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/fraction.js": {
|
||||
"version": "5.3.4",
|
||||
"resolved": "https://registry.npmjs.org/fraction.js/-/fraction.js-5.3.4.tgz",
|
||||
"integrity": "sha512-1X1NTtiJphryn/uLQz3whtY6jK3fTqoE3ohKs0tT+Ujr1W59oopxmoEh7Lu5p6vBaPbgoM0bzveAW4Qi5RyWDQ==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": "*"
|
||||
},
|
||||
"funding": {
|
||||
"type": "github",
|
||||
"url": "https://github.com/sponsors/rawify"
|
||||
}
|
||||
},
|
||||
"node_modules/generalFunctions": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git#302e12238745766a679ef11ca6ed5f4ea1548f87",
|
||||
"license": "SEE LICENSE"
|
||||
},
|
||||
"node_modules/javascript-natural-sort": {
|
||||
"version": "0.7.1",
|
||||
"resolved": "https://registry.npmjs.org/javascript-natural-sort/-/javascript-natural-sort-0.7.1.tgz",
|
||||
"integrity": "sha512-nO6jcEfZWQXDhOiBtG2KvKyEptz7RVbpGP4vTD2hLBdmNQSsCiicO2Ioinv6UI4y9ukqnBpy+XZ9H6uLNgJTlw==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/mathjs": {
|
||||
"version": "14.7.0",
|
||||
"resolved": "https://registry.npmjs.org/mathjs/-/mathjs-14.7.0.tgz",
|
||||
"integrity": "sha512-RaMhb+9MSESjDZNox/FzzuFpIUI+oxGLyOy1t3BMoW53pGWnTzZtlucJ5cvbit0dIMYlCq00gNbW1giZX4/1Rg==",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@babel/runtime": "^7.26.10",
|
||||
"complex.js": "^2.2.5",
|
||||
"decimal.js": "^10.4.3",
|
||||
"escape-latex": "^1.2.0",
|
||||
"fraction.js": "^5.2.1",
|
||||
"javascript-natural-sort": "^0.7.1",
|
||||
"seedrandom": "^3.0.5",
|
||||
"tiny-emitter": "^2.1.0",
|
||||
"typed-function": "^4.2.1"
|
||||
},
|
||||
"bin": {
|
||||
"mathjs": "bin/cli.js"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
}
|
||||
},
|
||||
"node_modules/seedrandom": {
|
||||
"version": "3.0.5",
|
||||
"resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-3.0.5.tgz",
|
||||
"integrity": "sha512-8OwmbklUNzwezjGInmZ+2clQmExQPvomqjL7LFqOYqtmuxRgQYqOD3mHaU+MvZn5FLUeVxVfQjwLZW/n/JFuqg==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/tiny-emitter": {
|
||||
"version": "2.1.0",
|
||||
"resolved": "https://registry.npmjs.org/tiny-emitter/-/tiny-emitter-2.1.0.tgz",
|
||||
"integrity": "sha512-NB6Dk1A9xgQPMoGqC5CVXn123gWyte215ONT5Pp5a0yt4nlEoO1ZWeCwpncaekPHXO60i47ihFnZPiRPjRMq4Q==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/typed-function": {
|
||||
"version": "4.2.1",
|
||||
"resolved": "https://registry.npmjs.org/typed-function/-/typed-function-4.2.1.tgz",
|
||||
"integrity": "sha512-EGjWssW7Tsk4DGfE+5yluuljS1OGYWiI1J6e8puZz9nTMM51Oug8CD5Zo4gWMsOhq5BI+1bF+rWTm4Vbj3ivRA==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"name": "asm3",
|
||||
"name": "reactor",
|
||||
"version": "0.0.1",
|
||||
"description": "Implementation of the asm3 model for Node-Red",
|
||||
"repository": {
|
||||
@@ -11,6 +11,7 @@
|
||||
"activated sludge",
|
||||
"wastewater",
|
||||
"biological model",
|
||||
"EVOLV",
|
||||
"node-red"
|
||||
],
|
||||
"license": "SEE LICENSE",
|
||||
@@ -21,13 +22,11 @@
|
||||
},
|
||||
"node-red": {
|
||||
"nodes": {
|
||||
"reactor": "reactor.js",
|
||||
"recirculation-pump": "additional_nodes/recirculation-pump.js",
|
||||
"settling-basin": "additional_nodes/settling-basin.js"
|
||||
"reactor": "reactor.js"
|
||||
}
|
||||
},
|
||||
"dependencies": {
|
||||
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git#fix-missing-references",
|
||||
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/RnD/generalFunctions.git",
|
||||
"mathjs": "^14.5.2"
|
||||
}
|
||||
}
|
||||
|
||||
63
reactor.html
63
reactor.html
@@ -1,8 +1,8 @@
|
||||
<script src="/advancedReactor/menu.js"></script>
|
||||
<script src="/reactor/menu.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
RED.nodes.registerType("advancedReactor", {
|
||||
category: "WWTP",
|
||||
RED.nodes.registerType("reactor", {
|
||||
category: "EVOLV",
|
||||
color: "#c4cce0",
|
||||
defaults: {
|
||||
name: { value: "" },
|
||||
@@ -10,8 +10,6 @@
|
||||
volume: { value: 0., required: true },
|
||||
length: { value: 0.},
|
||||
resolution_L: { value: 0.},
|
||||
alpha: {value: 0},
|
||||
n_inlets: { value: 1, required: true},
|
||||
kla: { value: null },
|
||||
|
||||
S_O_init: { value: 0., required: true },
|
||||
@@ -33,7 +31,7 @@
|
||||
enableLog: { value: false },
|
||||
logLevel: { value: "error" },
|
||||
|
||||
positionVsParent: { value: "" },
|
||||
positionVsParent: { value: "" }
|
||||
},
|
||||
inputs: 1,
|
||||
outputs: 3,
|
||||
@@ -41,13 +39,13 @@
|
||||
outputLabels: ["process", "dbase", "parent"],
|
||||
icon: "font-awesome/fa-recycle",
|
||||
label: function() {
|
||||
return this.name || "advancedReactor";
|
||||
return this.name || "Reactor";
|
||||
},
|
||||
oneditprepare: function() {
|
||||
// wait for the menu scripts to load
|
||||
const waitForMenuData = () => {
|
||||
if (window.EVOLV?.nodes?.advancedReactor?.initEditor) {
|
||||
window.EVOLV.nodes.advancedReactor.initEditor(this);
|
||||
if (window.EVOLV?.nodes?.reactor?.initEditor) {
|
||||
window.EVOLV.nodes.reactor.initEditor(this);
|
||||
} else {
|
||||
setTimeout(waitForMenuData, 50);
|
||||
}
|
||||
@@ -58,10 +56,6 @@
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-n_inlets").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-length").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
@@ -97,10 +91,6 @@
|
||||
$(".PFR").show();
|
||||
}
|
||||
});
|
||||
$("#node-input-alpha").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
})
|
||||
$("#node-input-timeStep").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
@@ -112,11 +102,24 @@
|
||||
} else {
|
||||
$(".PFR").show();
|
||||
}
|
||||
|
||||
const updateDx = () => {
|
||||
const length = parseFloat($("#node-input-length").val()) || 0;
|
||||
const resolution = parseFloat($("#node-input-resolution_L").val()) || 1;
|
||||
const dx = resolution > 0 ? (length / resolution).toFixed(6) : "N/A";
|
||||
$("#dx-output").text(dx + " m");
|
||||
};
|
||||
|
||||
// Set up event listeners for real-time updates
|
||||
$("#node-input-length, #node-input-resolution_L").on("change keyup", updateDx);
|
||||
|
||||
// Initial calculation
|
||||
updateDx();
|
||||
},
|
||||
oneditsave: function() {
|
||||
// save logger fields
|
||||
if (window.EVOLV?.nodes?.['advancedReactor']?.loggerMenu?.saveEditor) {
|
||||
window.EVOLV.nodes['advancedReactor'].loggerMenu.saveEditor(this);
|
||||
if (window.EVOLV?.nodes?.reactor?.loggerMenu?.saveEditor) {
|
||||
window.EVOLV.nodes.reactor.loggerMenu.saveEditor(this);
|
||||
}
|
||||
|
||||
// save position field
|
||||
@@ -128,15 +131,11 @@
|
||||
if (isNaN(volume) || volume <= 0) {
|
||||
RED.notify("Fluid volume not set correctly", {type: "error"});
|
||||
}
|
||||
let n_inlets = parseInt($("#node-input-n_inlets").typedInput("value"));
|
||||
if (isNaN(n_inlets) || n_inlets < 1) {
|
||||
RED.notify("Number of inlets not set correctly", {type: "error"});
|
||||
}
|
||||
}
|
||||
});
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-template-name="advancedReactor">
|
||||
<script type="text/html" data-template-name="reactor">
|
||||
<div class="form-row">
|
||||
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
|
||||
<input type="text" id="node-input-name" placeholder="Name">
|
||||
@@ -158,16 +157,9 @@
|
||||
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label>
|
||||
<input type="text" id="node-input-resolution_L" placeholder="#">
|
||||
</div>
|
||||
<div class="PFR">
|
||||
<p> Inlet boundary condition parameter α (α = 0: Danckwerts BC / α = 1: Dirichlet BC) </p>
|
||||
<div class="form-row">
|
||||
<label for="node-input-alpha"><i class="fa fa-tag"></i>Adjustable parameter BC</label>
|
||||
<input type="text" id="node-input-alpha">
|
||||
</div>
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-n_inlets"><i class="fa fa-tag"></i> Number of inlets</label>
|
||||
<input type="text" id="node-input-n_inlets" placeholder="#">
|
||||
<div class="form-row PFR">
|
||||
<label for="node-input-dx"><i class="fa fa-tag"></i> dx (length / resolution) [m]</label>
|
||||
<span id="dx-output" style="display: inline-block; padding: 8px; font-weight: bold; color: #333;">--</span>
|
||||
</div>
|
||||
<h3> Internal mass transfer calculation (optional) </h3>
|
||||
<div class="form-row">
|
||||
@@ -240,9 +232,8 @@
|
||||
<!-- Position fields will be injected here -->
|
||||
<div id="position-fields-placeholder"></div>
|
||||
|
||||
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-help-name="advancedReactor">
|
||||
<script type="text/html" data-help-name="reactor">
|
||||
<p>New reactor node</p>
|
||||
</script>
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
const nameOfNode = "advancedReactor"; // name of the node, should match file name and node type in Node-RED
|
||||
const nameOfNode = "reactor"; // name of the node, should match file name and node type in Node-RED
|
||||
const nodeClass = require('./src/nodeClass.js'); // node class
|
||||
const { MenuManager } = require('generalFunctions');
|
||||
|
||||
|
||||
@@ -34,7 +34,6 @@ class nodeClass {
|
||||
switch (msg.topic) {
|
||||
case "clock":
|
||||
this.source.updateState(msg.timestamp);
|
||||
send([msg, null, null]);
|
||||
break;
|
||||
case "Fluent":
|
||||
this.source.setInfluent = msg;
|
||||
@@ -42,9 +41,6 @@ class nodeClass {
|
||||
case "OTR":
|
||||
this.source.setOTR = msg;
|
||||
break;
|
||||
case "Temperature":
|
||||
this.source.setTemperature = msg;
|
||||
break;
|
||||
case "Dispersion":
|
||||
this.source.setDispersion = msg;
|
||||
break;
|
||||
@@ -87,8 +83,6 @@ class nodeClass {
|
||||
volume: parseFloat(uiConfig.volume),
|
||||
length: parseFloat(uiConfig.length),
|
||||
resolution_L: parseInt(uiConfig.resolution_L),
|
||||
alpha: parseFloat(uiConfig.alpha),
|
||||
n_inlets: parseInt(uiConfig.n_inlets),
|
||||
kla: parseFloat(uiConfig.kla),
|
||||
initialState: [
|
||||
parseFloat(uiConfig.S_O_init),
|
||||
|
||||
@@ -1,4 +1,67 @@
|
||||
const math = require('mathjs')
|
||||
const math = require('mathjs');
|
||||
|
||||
const ASM_CONSTANTS = {
|
||||
S_O_INDEX: 0,
|
||||
S_NH_INDEX: 3,
|
||||
S_NO_INDEX: 5,
|
||||
NUM_SPECIES: 13
|
||||
};
|
||||
|
||||
const KINETIC_CONSTANTS = {
|
||||
// Hydrolysis
|
||||
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
|
||||
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
|
||||
// Heterotrophs
|
||||
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
|
||||
nu_NO: 0.5, // anoxic reduction factor [-]
|
||||
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
|
||||
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
|
||||
K_S: 10., // saturation constant S_s [g COD m-3]
|
||||
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
|
||||
mu_H_max: 3., // maximum specific growth rate [d-1]
|
||||
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_H_O: 0.3, // aerobic respiration rate [d-1]
|
||||
b_H_NO: 0.15, // anoxic respiration rate [d-1]
|
||||
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
|
||||
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
|
||||
// Autotrophs
|
||||
mu_A_max: 1.3, // maximum specific growth rate [d-1]
|
||||
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
|
||||
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_A_O: 0.20, // aerobic respiration rate [d-1]
|
||||
b_A_NO: 0.10 // anoxic respiration rate [d-1]
|
||||
};
|
||||
|
||||
const STOICHIOMETRIC_CONSTANTS = {
|
||||
// Fractions
|
||||
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
|
||||
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
|
||||
// Yields
|
||||
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
|
||||
// Composition (COD via DoR)
|
||||
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
|
||||
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
|
||||
// Composition (nitrogen)
|
||||
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
|
||||
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
|
||||
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
|
||||
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
|
||||
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
|
||||
// Composition (TSS)
|
||||
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
|
||||
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
|
||||
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
|
||||
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
|
||||
// Composition (charge)
|
||||
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
|
||||
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
|
||||
};
|
||||
|
||||
/**
|
||||
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
|
||||
@@ -10,65 +73,13 @@ class ASM3 {
|
||||
* Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
|
||||
* @property {Object} kin_params - Kinetic parameters
|
||||
*/
|
||||
this.kin_params = {
|
||||
// Hydrolysis
|
||||
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
|
||||
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
|
||||
// Heterotrophs
|
||||
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
|
||||
nu_NO: 0.5, // anoxic reduction factor [-]
|
||||
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
|
||||
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
|
||||
K_S: 10., // saturation constant S_s [g COD m-3]
|
||||
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
|
||||
mu_H_max: 3., // maximum specific growth rate [d-1]
|
||||
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_H_O: 0.3, // aerobic respiration rate [d-1]
|
||||
b_H_NO: 0.15, // anoxic respiration rate [d-1]
|
||||
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
|
||||
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
|
||||
// Autotrophs
|
||||
mu_A_max: 1.3, // maximum specific growth rate [d-1]
|
||||
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
|
||||
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_A_O: 0.20, // aerobic respiration rate [d-1]
|
||||
b_A_NO: 0.10 // anoxic respiration rate [d-1]
|
||||
};
|
||||
this.kin_params = KINETIC_CONSTANTS;
|
||||
|
||||
/**
|
||||
* Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
|
||||
* @property {Object} stoi_params - Stoichiometric parameters
|
||||
*/
|
||||
this.stoi_params = {
|
||||
// Fractions
|
||||
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
|
||||
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
|
||||
// Yields
|
||||
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
|
||||
// Composition (COD via DoR)
|
||||
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
|
||||
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
|
||||
// Composition (nitrogen)
|
||||
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
|
||||
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
|
||||
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
|
||||
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
|
||||
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
|
||||
// Composition (TSS)
|
||||
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
|
||||
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
|
||||
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
|
||||
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
|
||||
// Composition (charge)
|
||||
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
|
||||
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
|
||||
};
|
||||
this.stoi_params = STOICHIOMETRIC_CONSTANTS;
|
||||
|
||||
/**
|
||||
* Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters.
|
||||
@@ -208,4 +219,4 @@ class ASM3 {
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = ASM3;
|
||||
module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };
|
||||
@@ -1,4 +1,67 @@
|
||||
const math = require('mathjs')
|
||||
const math = require('mathjs');
|
||||
|
||||
const ASM_CONSTANTS = {
|
||||
S_O_INDEX: 0,
|
||||
S_NH_INDEX: 3,
|
||||
S_NO_INDEX: 5,
|
||||
NUM_SPECIES: 13
|
||||
};
|
||||
|
||||
const KINETIC_CONSTANTS = {
|
||||
// Hydrolysis
|
||||
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
|
||||
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
|
||||
// Heterotrophs
|
||||
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
|
||||
nu_NO: 0.6, // anoxic reduction factor [-]
|
||||
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
|
||||
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
|
||||
K_S: 2., // saturation constant S_s [g COD m-3]
|
||||
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
|
||||
mu_H_max: 2., // maximum specific growth rate [d-1]
|
||||
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_H_O: 0.2, // aerobic respiration rate [d-1]
|
||||
b_H_NO: 0.1, // anoxic respiration rate [d-1]
|
||||
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
|
||||
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
|
||||
// Autotrophs
|
||||
mu_A_max: 1.0, // maximum specific growth rate [d-1]
|
||||
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
|
||||
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_A_O: 0.15, // aerobic respiration rate [d-1]
|
||||
b_A_NO: 0.05 // anoxic respiration rate [d-1]
|
||||
};
|
||||
|
||||
const STOICHIOMETRIC_CONSTANTS = {
|
||||
// Fractions
|
||||
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
|
||||
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
|
||||
// Yields
|
||||
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
|
||||
// Composition (COD via DoR)
|
||||
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
|
||||
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
|
||||
// Composition (nitrogen)
|
||||
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
|
||||
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
|
||||
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
|
||||
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
|
||||
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
|
||||
// Composition (TSS)
|
||||
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
|
||||
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
|
||||
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
|
||||
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
|
||||
// Composition (charge)
|
||||
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
|
||||
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
|
||||
};
|
||||
|
||||
/**
|
||||
* ASM3 class for the Activated Sludge Model No. 3 (ASM3).
|
||||
@@ -10,65 +73,13 @@ class ASM3 {
|
||||
* Kinetic parameters for ASM3 at 20 C.
|
||||
* @property {Object} kin_params - Kinetic parameters
|
||||
*/
|
||||
this.kin_params = {
|
||||
// Hydrolysis
|
||||
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
|
||||
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
|
||||
// Heterotrophs
|
||||
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
|
||||
nu_NO: 0.6, // anoxic reduction factor [-]
|
||||
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
|
||||
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
|
||||
K_S: 2., // saturation constant S_s [g COD m-3]
|
||||
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
|
||||
mu_H_max: 2., // maximum specific growth rate [d-1]
|
||||
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_H_O: 0.2, // aerobic respiration rate [d-1]
|
||||
b_H_NO: 0.1, // anoxic respiration rate [d-1]
|
||||
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
|
||||
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
|
||||
// Autotrophs
|
||||
mu_A_max: 1.0, // maximum specific growth rate [d-1]
|
||||
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
|
||||
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_A_O: 0.15, // aerobic respiration rate [d-1]
|
||||
b_A_NO: 0.05 // anoxic respiration rate [d-1]
|
||||
};
|
||||
this.kin_params = KINETIC_CONSTANTS;
|
||||
|
||||
/**
|
||||
* Stoichiometric and composition parameters for ASM3.
|
||||
* @property {Object} stoi_params - Stoichiometric parameters
|
||||
*/
|
||||
this.stoi_params = {
|
||||
// Fractions
|
||||
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
|
||||
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
|
||||
// Yields
|
||||
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
|
||||
// Composition (COD via DoR)
|
||||
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
|
||||
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
|
||||
// Composition (nitrogen)
|
||||
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
|
||||
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
|
||||
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
|
||||
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
|
||||
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
|
||||
// Composition (TSS)
|
||||
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
|
||||
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
|
||||
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
|
||||
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
|
||||
// Composition (charge)
|
||||
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
|
||||
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
|
||||
};
|
||||
this.stoi_params = STOICHIOMETRIC_CONSTANTS;
|
||||
|
||||
/**
|
||||
* Temperature theta parameters for ASM3.
|
||||
@@ -208,4 +219,4 @@ class ASM3 {
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = ASM3;
|
||||
module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };
|
||||
@@ -1,4 +1,4 @@
|
||||
const ASM3 = require('./reaction_modules/asm3_class.js');
|
||||
const { ASM3, ASM_CONSTANTS } = require('./reaction_modules/asm3_class.js');
|
||||
const { create, all, isArray } = require('mathjs');
|
||||
const { assertNoNaN } = require('./utils.js');
|
||||
const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions');
|
||||
@@ -10,9 +10,9 @@ const mathConfig = {
|
||||
|
||||
const math = create(all, mathConfig);
|
||||
|
||||
const S_O_INDEX = 0;
|
||||
const NUM_SPECIES = 13;
|
||||
const BC_PADDING = 2; // Boundary Condition padding for open boundaries in extendedState variable
|
||||
const DEBUG = false;
|
||||
const DAY2MS = 1000 * 60 * 60 * 24; // convert between days and milliseconds
|
||||
|
||||
class Reactor {
|
||||
/**
|
||||
@@ -25,23 +25,27 @@ class Reactor {
|
||||
this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name);
|
||||
this.emitter = new EventEmitter();
|
||||
this.measurements = new MeasurementContainer();
|
||||
this.upstreamReactor = null;
|
||||
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
|
||||
this.childRegistrationUtils = new childRegistrationUtils(this); // child registration utility
|
||||
|
||||
this.asm = new ASM3();
|
||||
// placeholder variables for children and parents
|
||||
this.upstreamReactor = null;
|
||||
this.downstreamReactor = null;
|
||||
this.returnPump = null;
|
||||
|
||||
this.asm = new ASM3(); // Reaction model
|
||||
|
||||
this.volume = config.volume; // fluid volume reactor [m3]
|
||||
|
||||
this.Fs = Array(config.n_inlets).fill(0); // fluid debits per inlet [m3 d-1]
|
||||
this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(NUM_SPECIES).fill(0)); // composition influents
|
||||
this.Fs = [0]; // fluid debits per inlet [m3 d-1]
|
||||
this.Cs_in = [Array(ASM_CONSTANTS.NUM_SPECIES).fill(0)]; // composition influents
|
||||
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1 m-3]
|
||||
this.temperature = 20; // temperature [C]
|
||||
|
||||
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
|
||||
|
||||
this.currentTime = Date.now(); // milliseconds since epoch [ms]
|
||||
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step [d]
|
||||
this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second
|
||||
this.currentTime = null; // milliseconds since epoch [ms]
|
||||
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step in seconds, converted to days.
|
||||
this.speedUpFactor = 1; // speed up factor for simulation, 60 means 1 minute per simulated second
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -49,9 +53,15 @@ class Reactor {
|
||||
* @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
|
||||
*/
|
||||
set setInfluent(input) {
|
||||
let index_in = input.payload.inlet;
|
||||
this.Fs[index_in] = input.payload.F;
|
||||
this.Cs_in[index_in] = input.payload.C;
|
||||
const i_in = input.payload.inlet;
|
||||
if (this.Fs.length <= i_in) {
|
||||
this.logger.debug(`Adding new inlet index ${i_in}.`);
|
||||
this.Fs.push(0);
|
||||
this.Cs_in.push(Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
|
||||
this.setInfluent = input;
|
||||
}
|
||||
this.Fs[i_in] = input.payload.F;
|
||||
this.Cs_in[i_in] = input.payload.C;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -64,13 +74,20 @@ class Reactor {
|
||||
|
||||
/**
|
||||
* Getter for effluent data.
|
||||
* @returns {object} Effluent data object (msg), defaults to inlet 0.
|
||||
* @returns {object} Effluent data object (msg).
|
||||
*/
|
||||
get getEffluent() { // getter for Effluent, defaults to inlet 0
|
||||
if (isArray(this.state.at(-1))) {
|
||||
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state.at(-1) }, timestamp: this.currentTime };
|
||||
get getEffluent() {
|
||||
const Cs = isArray(this.state.at(-1)) ? this.state.at(-1) : this.state;
|
||||
const effluent = [{ topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: Cs }, timestamp: this.currentTime }];
|
||||
if (this.returnPump) {
|
||||
const recirculationFlow = this.returnPump.measurements.type("flow").variant("measured").position("atEquipment").getCurrentValue();
|
||||
// constrain flow to prevent negatives
|
||||
const F_main = Math.max(effluent[0].payload.F - recirculationFlow, 0);
|
||||
const F_sidestream = effluent[0].payload.F < recirculationFlow ? effluent[0].payload.F : recirculationFlow;
|
||||
effluent[0].payload.F = F_main;
|
||||
effluent.push({ topic: "Fluent", payload: { inlet: 1, F: F_sidestream, C: Cs }, timestamp: this.currentTime });
|
||||
}
|
||||
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state }, timestamp: this.currentTime };
|
||||
return effluent;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -80,7 +97,7 @@ class Reactor {
|
||||
* @returns {number} - Calculated OTR [g O2 d-1 m-3].
|
||||
*/
|
||||
_calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
|
||||
let S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
|
||||
const S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
|
||||
return this.kla * (S_O_sat - S_O);
|
||||
}
|
||||
|
||||
@@ -97,35 +114,43 @@ class Reactor {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Register child function required for child registration.
|
||||
* @param {object} child
|
||||
* @param {string} softwareType
|
||||
*/
|
||||
registerChild(child, softwareType) {
|
||||
if(!child) {
|
||||
this.logger.error(`Invalid ${softwareType} child provided.`);
|
||||
return;
|
||||
}
|
||||
|
||||
switch (softwareType) {
|
||||
case "measurement":
|
||||
this.logger.debug(`Registering measurement child.`);
|
||||
this.logger.debug(`Registering measurement child...`);
|
||||
this._connectMeasurement(child);
|
||||
break;
|
||||
case "reactor":
|
||||
this.logger.debug(`Registering reactor child.`);
|
||||
this.logger.debug(`Registering reactor child...`);
|
||||
this._connectReactor(child);
|
||||
break;
|
||||
case "machine":
|
||||
this.logger.debug(`Registering machine child...`);
|
||||
this._connectMachine(child);
|
||||
break;
|
||||
|
||||
default:
|
||||
this.logger.error(`Unrecognized softwareType: ${softwareType}`);
|
||||
}
|
||||
}
|
||||
|
||||
_connectMeasurement(measurement) {
|
||||
if (!measurement) {
|
||||
this.logger.warn("Invalid measurement provided.");
|
||||
return;
|
||||
}
|
||||
|
||||
const position = measurement.config.functionality.positionVsParent;
|
||||
const measurementType = measurement.config.asset.type;
|
||||
const key = `${measurementType}_${position}`;
|
||||
_connectMeasurement(measurementChild) {
|
||||
const position = measurementChild.config.functionality.positionVsParent;
|
||||
const measurementType = measurementChild.config.asset.type;
|
||||
const eventName = `${measurementType}.measured.${position}`;
|
||||
|
||||
// Register event listener for measurement updates
|
||||
this.measurements.emitter.on(eventName, (eventData) => {
|
||||
measurementChild.measurements.emitter.on(eventName, (eventData) => {
|
||||
this.logger.debug(`${position} ${measurementType} from ${eventData.childName}: ${eventData.value} ${eventData.unit}`);
|
||||
|
||||
// Store directly in parent's measurement container
|
||||
@@ -140,20 +165,27 @@ class Reactor {
|
||||
}
|
||||
|
||||
|
||||
_connectReactor(reactor) {
|
||||
if (!reactor) {
|
||||
this.logger.warn("Invalid reactor provided.");
|
||||
return;
|
||||
_connectReactor(reactorChild) {
|
||||
if (reactorChild.config.functionality.positionVsParent != "upstream") {
|
||||
this.logger.warn("Reactor children of other reactors should always be upstream!");
|
||||
}
|
||||
|
||||
this.upstreamReactor = reactor;
|
||||
// set upstream and downstream reactor variable in current and child nodes respectively for easy access
|
||||
this.upstreamReactor = reactorChild;
|
||||
reactorChild.downstreamReactor = this;
|
||||
|
||||
reactor.emitter.on("stateChange", (data) => {
|
||||
reactorChild.emitter.on("stateChange", (eventData) => { // Triggers state update in downstream reactor.
|
||||
this.logger.debug(`State change of upstream reactor detected.`);
|
||||
this.updateState(data);
|
||||
this.updateState(eventData);
|
||||
});
|
||||
}
|
||||
|
||||
_connectMachine(machineChild) {
|
||||
if (machineChild.config.functionality.positionVsParent == "downstream") {
|
||||
machineChild.upstreamSource = this;
|
||||
this.returnPump = machineChild;
|
||||
}
|
||||
}
|
||||
|
||||
_updateMeasurement(measurementType, value, position, context) {
|
||||
this.logger.debug(`---------------------- updating ${measurementType} ------------------ `);
|
||||
@@ -173,22 +205,32 @@ class Reactor {
|
||||
* Update the reactor state based on the new time.
|
||||
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
|
||||
*/
|
||||
updateState(newTime = Date.now()) { // expect update with timestamp
|
||||
const day2ms = 1000 * 60 * 60 * 24;
|
||||
|
||||
if (this.upstreamReactor) {
|
||||
this.setInfluent = this.upstreamReactor.getEffluent;
|
||||
updateState(newTime) {
|
||||
if (!this.currentTime) { // initialise currentTime variable
|
||||
this.currentTime = newTime;
|
||||
return;
|
||||
}
|
||||
|
||||
let n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*day2ms));
|
||||
if (n_iter) {
|
||||
let n = 0;
|
||||
while (n < n_iter) {
|
||||
this.tick(this.timeStep);
|
||||
n += 1;
|
||||
}
|
||||
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
|
||||
this.emitter.emit("stateChange", this.currentTime);
|
||||
if (this.upstreamReactor) { // grab main effluent upstream reactor
|
||||
this.setInfluent = this.upstreamReactor.getEffluent[0];
|
||||
}
|
||||
|
||||
const n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*DAY2MS));
|
||||
|
||||
if (n_iter == 0) { // no update required, change in currentTime smaller than time step
|
||||
return;
|
||||
}
|
||||
|
||||
let n = 0;
|
||||
while (n < n_iter) {
|
||||
this.tick(this.timeStep);
|
||||
n += 1;
|
||||
}
|
||||
this.currentTime += n_iter * this.timeStep * DAY2MS / this.speedUpFactor;
|
||||
this.emitter.emit("stateChange", this.currentTime); // update downstream reactors
|
||||
|
||||
if (this.returnPump) { // update recirculation pump state
|
||||
this.returnPump.updateSourceSink();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -203,6 +245,23 @@ class Reactor_CSTR extends Reactor {
|
||||
this.state = config.initialState;
|
||||
}
|
||||
|
||||
_updateMeasurement(measurementType, value, position, context) {
|
||||
|
||||
switch(measurementType) {
|
||||
case "quantity (oxygen)":
|
||||
this.state[ASM_CONSTANTS.S_O_INDEX] = value;
|
||||
break;
|
||||
case "quantity (ammonium)":
|
||||
this.state[ASM_CONSTANTS.S_NH_INDEX] = value;
|
||||
break;
|
||||
case "quantity (nox)":
|
||||
this.state[ASM_CONSTANTS.S_NO_INDEX] = value;
|
||||
break;
|
||||
default:
|
||||
super._updateMeasurement(measurementType, value, position, context);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Tick the reactor state using the forward Euler method.
|
||||
* @param {number} time_step - Time step for the simulation [d].
|
||||
@@ -212,8 +271,8 @@ class Reactor_CSTR extends Reactor {
|
||||
const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0];
|
||||
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
|
||||
const reaction = this.asm.compute_dC(this.state, this.temperature);
|
||||
const transfer = Array(NUM_SPECIES).fill(0.0);
|
||||
transfer[S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
|
||||
const transfer = Array(ASM_CONSTANTS.NUM_SPECIES).fill(0.0);
|
||||
transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[ASM_CONSTANTS.S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
|
||||
|
||||
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
|
||||
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
|
||||
@@ -239,13 +298,15 @@ class Reactor_PFR extends Reactor {
|
||||
this.d_x = this.length / this.n_x;
|
||||
this.A = this.volume / this.length; // crosssectional area [m2]
|
||||
|
||||
this.alpha = config.alpha;
|
||||
this.state = Array.from(Array(this.n_x), () => config.initialState.slice());
|
||||
this.extendedState = Array.from(Array(this.n_x + 2*BC_PADDING), () => new Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
|
||||
|
||||
this.state = Array.from(Array(this.n_x), () => config.initialState.slice())
|
||||
// initialise extended state
|
||||
this.state.forEach((row, i) => this.extendedState[i+BC_PADDING] = row);
|
||||
|
||||
this.D = 0.0; // axial dispersion [m2 d-1]
|
||||
|
||||
this.D_op = this._makeDoperator(true, true);
|
||||
this.D_op = this._makeDoperator();
|
||||
assertNoNaN(this.D_op, "Derivative operator");
|
||||
|
||||
this.D2_op = this._makeD2operator();
|
||||
@@ -257,15 +318,26 @@ class Reactor_PFR extends Reactor {
|
||||
* @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1].
|
||||
*/
|
||||
set setDispersion(input) {
|
||||
this.D = input.payload;
|
||||
this.D = this._constrainDispersion(input.payload);
|
||||
}
|
||||
|
||||
_connectReactor(reactorChild) {
|
||||
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
|
||||
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
|
||||
}
|
||||
super._connectReactor(reactorChild);
|
||||
}
|
||||
|
||||
/**
|
||||
* Update the reactor state based on the new time. Performs checks specific to PFR.
|
||||
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
|
||||
*/
|
||||
updateState(newTime) {
|
||||
super.updateState(newTime);
|
||||
let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
|
||||
let Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
|
||||
|
||||
this.D = this._constrainDispersion(this.D); // constrains D to minimum dispersion, so that local Péclet number is always above 2
|
||||
const Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
|
||||
|
||||
(Pe_local >= 2) && this.logger.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
|
||||
(Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
|
||||
|
||||
if(DEBUG) {
|
||||
@@ -283,25 +355,26 @@ class Reactor_PFR extends Reactor {
|
||||
* @returns {Array} - New reactor state.
|
||||
*/
|
||||
tick(time_step) {
|
||||
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
|
||||
const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.state);
|
||||
const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
|
||||
const transfer = Array.from(Array(this.n_x), () => new Array(NUM_SPECIES).fill(0));
|
||||
this._applyBoundaryConditions();
|
||||
|
||||
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.extendedState);
|
||||
const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.extendedState);
|
||||
const reaction = this.extendedState.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
|
||||
const transfer = Array.from(Array(this.n_x+2*BC_PADDING), () => new Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
|
||||
|
||||
if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
|
||||
for (let i = 1; i < this.n_x - 1; i++) {
|
||||
transfer[i][S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
|
||||
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
|
||||
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
|
||||
}
|
||||
} else {
|
||||
for (let i = 1; i < this.n_x - 1; i++) {
|
||||
transfer[i][S_O_INDEX] = this._calcOTR(this.state[i][S_O_INDEX], this.temperature) * this.n_x/(this.n_x-2);
|
||||
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
|
||||
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this._calcOTR(this.extendedState[i][ASM_CONSTANTS.S_O_INDEX], this.temperature);
|
||||
}
|
||||
}
|
||||
|
||||
const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step);
|
||||
const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer).slice(BC_PADDING, this.n_x+BC_PADDING), time_step);
|
||||
|
||||
const stateNew = math.add(this.state, dC_total);
|
||||
this._applyBoundaryConditions(stateNew);
|
||||
|
||||
if (DEBUG) {
|
||||
assertNoNaN(dispersion, "dispersion");
|
||||
@@ -312,102 +385,104 @@ class Reactor_PFR extends Reactor {
|
||||
}
|
||||
|
||||
this.state = this._arrayClip2Zero(stateNew);
|
||||
this.state.forEach((row, i) => this.extendedState[i+BC_PADDING] = row);
|
||||
return stateNew;
|
||||
}
|
||||
|
||||
_updateMeasurement(measurementType, value, position, context) {
|
||||
const grid_pos = Math.round(context.distance / this.config.length * this.n_x);
|
||||
|
||||
// naive approach for reconciling measurements and simulation
|
||||
// could benefit from Kalman filter?
|
||||
switch(measurementType) {
|
||||
case "oxygen":
|
||||
grid_pos = Math.round(position * this.n_x);
|
||||
this.state[grid_pos][S_O_INDEX] = value; // naive approach for reconciling measurements and simulation
|
||||
case "quantity (oxygen)":
|
||||
this.state[grid_pos][ASM_CONSTANTS.S_O_INDEX] = value;
|
||||
break;
|
||||
case "quantity (ammonium)":
|
||||
this.state[grid_pos][ASM_CONSTANTS.S_NH_INDEX] = value;
|
||||
break;
|
||||
case "quantity (nox)":
|
||||
this.state[grid_pos][ASM_CONSTANTS.S_NO_INDEX] = value;
|
||||
break;
|
||||
default:
|
||||
super._updateMeasurement(measurementType, value, position, context);
|
||||
}
|
||||
super._updateMeasurement(measurementType, value, position, context);
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply boundary conditions to the reactor state.
|
||||
* for inlet, apply generalised Danckwerts BC, if there is not flow, apply Neumann BC with no flux
|
||||
* for outlet, apply regular Danckwerts BC (Neumann BC with no flux)
|
||||
* @param {Array} state - Current reactor state without enforced BCs.
|
||||
*/
|
||||
_applyBoundaryConditions(state) {
|
||||
if (math.sum(this.Fs) > 0) { // Danckwerts BC
|
||||
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
|
||||
const BC_dispersion_term = (1-this.alpha)*this.D*this.A/(math.sum(this.Fs)*this.d_x);
|
||||
state[0] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, state[1])));
|
||||
_applyBoundaryConditions() {
|
||||
// Upstream BC
|
||||
if (this.upstreamReactor && this.upstreamReactor.config.reactor_type == "PFR") {
|
||||
// Open boundary, if upstream reactor is PFR
|
||||
this.extendedState.splice(0, BC_PADDING, ...this.upstreamReactor.state.slice(-BC_PADDING));
|
||||
} else {
|
||||
state[0] = state[1];
|
||||
if (math.sum(this.Fs) > 0) {
|
||||
// Danckwerts BC
|
||||
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
|
||||
const BC_dispersion_term = this.D*this.A/(math.sum(this.Fs)*this.d_x);
|
||||
this.extendedState[BC_PADDING] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, this.extendedState[BC_PADDING+1])));
|
||||
// Numerical boundary condition (first-order accurate)
|
||||
this.extendedState[BC_PADDING-1] = math.add(math.multiply(2, this.extendedState[BC_PADDING]), math.multiply(-2, this.extendedState[BC_PADDING+2]), this.extendedState[BC_PADDING+3]);
|
||||
} else {
|
||||
// Neumann BC (no flux)
|
||||
this.extendedState.fill(this.extendedState[BC_PADDING], 0, BC_PADDING);
|
||||
}
|
||||
}
|
||||
|
||||
// Downstream BC
|
||||
if (this.downstreamReactor && this.downstreamReactor.config.reactor_type == "PFR") {
|
||||
// Open boundary, if downstream reactor is PFR
|
||||
this.extendedState.splice(this.n_x+BC_PADDING, BC_PADDING, ...this.downstreamReactor.state.slice(0, BC_PADDING));
|
||||
} else {
|
||||
// Neumann BC (no flux)
|
||||
this.extendedState.fill(this.extendedState.at(-1-BC_PADDING), BC_PADDING+this.n_x);
|
||||
}
|
||||
// Neumann BC (no flux)
|
||||
state[this.n_x-1] = state[this.n_x-2];
|
||||
}
|
||||
|
||||
/**
|
||||
* Create finite difference first derivative operator.
|
||||
* @param {boolean} central - Use central difference scheme if true, otherwise use upwind scheme.
|
||||
* @param {boolean} higher_order - Use higher order scheme if true, otherwise use first order scheme.
|
||||
* @returns {Array} - First derivative operator matrix.
|
||||
*/
|
||||
_makeDoperator(central = false, higher_order = false) { // create gradient operator
|
||||
if (higher_order) {
|
||||
if (central) {
|
||||
const I = math.resize(math.diag(Array(this.n_x).fill(1/12), -2), [this.n_x, this.n_x]);
|
||||
const A = math.resize(math.diag(Array(this.n_x).fill(-2/3), -1), [this.n_x, this.n_x]);
|
||||
const B = math.resize(math.diag(Array(this.n_x).fill(2/3), 1), [this.n_x, this.n_x]);
|
||||
const C = math.resize(math.diag(Array(this.n_x).fill(-1/12), 2), [this.n_x, this.n_x]);
|
||||
const D = math.add(I, A, B, C);
|
||||
const NearBoundary = Array(this.n_x).fill(0.0);
|
||||
NearBoundary[0] = -1/4;
|
||||
NearBoundary[1] = -5/6;
|
||||
NearBoundary[2] = 3/2;
|
||||
NearBoundary[3] = -1/2;
|
||||
NearBoundary[4] = 1/12;
|
||||
D[1] = NearBoundary;
|
||||
NearBoundary.reverse();
|
||||
D[this.n_x-2] = math.multiply(-1, NearBoundary);
|
||||
D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
|
||||
D[this.n_x-1] = Array(this.n_x).fill(0);
|
||||
return D;
|
||||
} else {
|
||||
throw new Error("Upwind higher order method not implemented! Use central scheme instead.");
|
||||
}
|
||||
} else {
|
||||
const I = math.resize(math.diag(Array(this.n_x).fill(1 / (1+central)), central), [this.n_x, this.n_x]);
|
||||
const A = math.resize(math.diag(Array(this.n_x).fill(-1 / (1+central)), -1), [this.n_x, this.n_x]);
|
||||
const D = math.add(I, A);
|
||||
D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
|
||||
D[this.n_x-1] = Array(this.n_x).fill(0);
|
||||
return D;
|
||||
}
|
||||
_makeDoperator() { // create gradient operator
|
||||
const D_size = this.n_x+2*BC_PADDING;
|
||||
const I = math.resize(math.diag(Array(D_size).fill(1/12), -2), [D_size, D_size]);
|
||||
const A = math.resize(math.diag(Array(D_size).fill(-2/3), -1), [D_size, D_size]);
|
||||
const B = math.resize(math.diag(Array(D_size).fill(2/3), 1), [D_size, D_size]);
|
||||
const C = math.resize(math.diag(Array(D_size).fill(-1/12), 2), [D_size, D_size]);
|
||||
const D = math.add(I, A, B, C);
|
||||
// set by BCs elsewhere
|
||||
D.forEach((row, i) => i < BC_PADDING || i >= this.n_x+BC_PADDING ? row.fill(0) : row);
|
||||
return D;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create central finite difference second derivative operator.
|
||||
* @returns {Array} - Second derivative operator matrix.
|
||||
*/
|
||||
_makeD2operator() { // create the central second derivative operator
|
||||
const I = math.diag(Array(this.n_x).fill(-2), 0);
|
||||
const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]);
|
||||
const B = math.resize(math.diag(Array(this.n_x).fill(1), -1), [this.n_x, this.n_x]);
|
||||
const D_size = this.n_x+2*BC_PADDING;
|
||||
const I = math.diag(Array(D_size).fill(-2), 0);
|
||||
const A = math.resize(math.diag(Array(D_size).fill(1), 1), [D_size, D_size]);
|
||||
const B = math.resize(math.diag(Array(D_size).fill(1), -1), [D_size, D_size]);
|
||||
const D2 = math.add(I, A, B);
|
||||
D2[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
|
||||
D2[this.n_x - 1] = Array(this.n_x).fill(0);
|
||||
// set by BCs elsewhere
|
||||
D2.forEach((row, i) => i < BC_PADDING || i >= this.n_x+BC_PADDING ? row.fill(0) : row);
|
||||
return D2;
|
||||
}
|
||||
|
||||
/**
|
||||
* Constrains dispersion so that local Péclet number stays below 2. Needed for stable central differencing method.
|
||||
*/
|
||||
_constrainDispersion(D) {
|
||||
const Dmin = math.sum(this.Fs) * this.d_x / (1.999 * this.A);
|
||||
if (D < Dmin) {
|
||||
this.logger.warn(`Local Péclet number too high! Constraining given dispersion (${D}) to minimal value (${Dmin}).`);
|
||||
return Dmin;
|
||||
}
|
||||
return D;
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { Reactor_CSTR, Reactor_PFR };
|
||||
|
||||
// DEBUG
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
|
||||
// const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state);
|
||||
// Reactor.Cs_in[0] = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.];
|
||||
// Reactor.Fs[0] = 10;
|
||||
// Reactor.D = 0.01;
|
||||
// let N = 0;
|
||||
// while (N < 5000) {
|
||||
// console.log(Reactor.tick(0.001));
|
||||
// N += 1;
|
||||
// }
|
||||
module.exports = { Reactor_CSTR, Reactor_PFR };
|
||||
Reference in New Issue
Block a user