27 Commits

Author SHA1 Message Date
033a56a9e0 Enhance comments and documentation in Reactor classes for clarity and maintainability 2025-11-21 12:29:46 +01:00
dd70b8c890 Fix CSTR PFR distinctions 2025-11-21 11:02:40 +01:00
3d93f2a7b9 Fix minor bug 2025-11-14 14:48:39 +01:00
cc89833530 Update state handling in reactor class and optimize time iteration logic 2025-11-14 13:11:09 +01:00
f3bbf63602 Add return pump update in reactor state change 2025-11-14 12:55:34 +01:00
70af0885e3 Prepare for working with relative time 2025-11-14 12:34:52 +01:00
dbfc4a81b2 Remove unused / depreciated input handling 2025-11-14 12:33:16 +01:00
f14e2c8d8e Reformat asm constants 2025-11-13 16:52:38 +01:00
7e34b9aa71 Add real-time calculation for dx based on length and resolution inputs 2025-11-13 13:59:56 +01:00
2b37163a8a Minor fixes 2025-11-07 16:51:48 +01:00
a106276ca6 Add additional ASM constants, add other sensor handling, fix bug in kla model 2025-11-07 11:59:24 +01:00
ffb4080f14 Refactor boundary condition handling in Reactor_PFR class for improved clarity and efficiency 2025-11-06 17:24:10 +01:00
260d04b96f Minor optimisations in code and clarification 2025-11-06 16:36:51 +01:00
9f060d2dd0 Refactor, minor changes and remove depreciated functions 2025-11-06 16:09:18 +01:00
b0dd9b6a8f Refactor ASM3 module to export ASM_CONSTANTS and update references in Reactor classes 2025-11-06 15:47:18 +01:00
5c41dc44a3 Clean up unused code 2025-11-06 15:46:43 +01:00
4578667a96 Merge pull request 'Recirculation Integration' (#4) from recirculation-integration into main
Reviewed-on: #4
2025-11-06 13:55:42 +00:00
3828e43c12 Refactor reactor node configuration to remove n_inlets and simplify inlet handling 2025-11-06 14:51:06 +01:00
e6923f2916 Refactor child registration and connection methods to handle invalid inputs and improve readability 2025-10-31 11:54:28 +01:00
4680b98418 minor variable name changes 2025-10-23 17:16:10 +02:00
eb787ec47f Minor bug fix and change in report level when encountering invalid children 2025-10-22 14:40:56 +02:00
HorriblePerson555
6de4f9ec3e Fix recirculation flow calculation to prevent negative flow rates and improve variable naming 2025-10-21 13:02:41 +02:00
HorriblePerson555
7b38c2f51a Refactor recirculation flow calculation to ensure non-negative flow rates and correct measurement position 2025-10-21 12:32:21 +02:00
HorriblePerson555
018215934e Fix recirculation flow measurement to use getCurrentValue and handle undefined values 2025-10-20 17:37:29 +02:00
HorriblePerson555
3a820df7f2 Non-functioning prototype with partial rotating machine integration 2025-10-20 16:45:53 +02:00
HorriblePerson555
670c4deacb Merge branch 'boundary-conditions' 2025-10-16 15:36:37 +02:00
442ddc60ed Fix syntax error 2025-10-01 11:50:35 +02:00
12 changed files with 306 additions and 2343 deletions

View File

@@ -1,57 +0,0 @@
<script type="text/javascript">
RED.nodes.registerType("recirculation-pump", {
category: "WWTP",
color: "#e4a363",
defaults: {
name: { value: "" },
F2: { value: 0, required: true },
inlet: { value: 1, required: true }
},
inputs: 1,
outputs: 2,
outputLabels: ["Main effluent", "Recirculation effluent"],
icon: "font-awesome/fa-random",
label: function() {
return this.name || "Recirculation pump";
},
oneditprepare: function() {
$("#node-input-F2").typedInput({
type:"num",
types:["num"]
});
$("#node-input-inlet").typedInput({
type:"num",
types:["num"]
});
},
oneditsave: function() {
let debit = parseFloat($("#node-input-F2").typedInput("value"));
if (isNaN(debit) || debit < 0) {
RED.notify("Debit is not set correctly", {type: "error"});
}
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
if (inlet < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
<script type="text/html" data-template-name="recirculation-pump">
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
<div class="form-row">
<label for="node-input-F2"><i class="fa fa-tag"></i> Recirculation debit [m3 d-1]</label>
<input type="text" id="node-input-F2" placeholder="m3 s-1">
</div>
<div class="form-row">
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet recirculation</label>
<input type="text" id="node-input-inlet" placeholder="#">
</div>
</script>
<script type="text/html" data-help-name="recirculation-pump">
<p>Recirculation-pump for splitting streams</p>
</script>

View File

@@ -1,40 +0,0 @@
module.exports = function(RED) {
function recirculation(config) {
RED.nodes.createNode(this, config);
var node = this;
let name = config.name;
let F2 = parseFloat(config.F2);
const inlet_F2 = parseInt(config.inlet);
node.on('input', function(msg, send, done) {
switch (msg.topic) {
case "Fluent":
// conserve volume flow debit
let F_in = msg.payload.F;
let F1 = Math.max(F_in - F2, 0);
let F2_corr = F_in < F2 ? F_in : F2;
let msg_F1 = structuredClone(msg);
msg_F1.payload.F = F1;
let msg_F2 = {...msg};
msg_F2.payload.F = F2_corr;
msg_F2.payload.inlet = inlet_F2;
send([msg_F1, msg_F2]);
break;
case "clock":
break;
default:
console.log("Unknown topic: " + msg.topic);
}
if (done) {
done();
}
});
}
RED.nodes.registerType("recirculation-pump", recirculation);
};

View File

@@ -1,57 +0,0 @@
<script type="text/javascript">
RED.nodes.registerType("settling-basin", {
category: "WWTP",
color: "#e4a363",
defaults: {
name: { value: "" },
TS_set: { value: 0.1, required: true },
inlet: { value: 1, required: true }
},
inputs: 1,
outputs: 2,
outputLabels: ["Main effluent", "Sludge effluent"],
icon: "font-awesome/fa-random",
label: function() {
return this.name || "Settling basin";
},
oneditprepare: function() {
$("#node-input-TS_set").typedInput({
type:"num",
types:["num"]
});
$("#node-input-inlet").typedInput({
type:"num",
types:["num"]
});
},
oneditsave: function() {
let TS_set = parseFloat($("#node-input-TS_set").typedInput("value"));
if (isNaN(TS_set) || TS_set < 0) {
RED.notify("TS is not set correctly", {type: "error"});
}
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
if (inlet < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
<script type="text/html" data-template-name="settling-basin">
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
<div class="form-row">
<label for="node-input-TS_set"><i class="fa fa-tag"></i> Total Solids set point [g m-3]</label>
<input type="text" id="node-input-TS_set" placeholder="">
</div>
<div class="form-row">
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet return line</label>
<input type="text" id="node-input-inlet" placeholder="#">
</div>
</script>
<script type="text/html" data-help-name="settling-basin">
<p>Settling tank</p>
</script>

View File

@@ -1,57 +0,0 @@
module.exports = function(RED) {
function settler(config) {
RED.nodes.createNode(this, config);
var node = this;
let name = config.name;
let TS_set = parseFloat(config.TS_set);
const inlet_sludge = parseInt(config.inlet);
node.on('input', function(msg, send, done) {
switch (msg.topic) {
case "Fluent":
// conserve volume flow debit
let F_in = msg.payload.F;
let C_in = msg.payload.C;
let F2 = (F_in * C_in[12]) / TS_set;
let F1 = Math.max(F_in - F2, 0);
let F2_corr = F_in < F2 ? F_in : F2;
let msg_F1 = structuredClone(msg);
msg_F1.payload.F = F1;
msg_F1.payload.C[7] = 0;
msg_F1.payload.C[8] = 0;
msg_F1.payload.C[9] = 0;
msg_F1.payload.C[10] = 0;
msg_F1.payload.C[11] = 0;
msg_F1.payload.C[12] = 0;
let msg_F2 = {...msg};
msg_F2.payload.F = F2_corr;
if (F2_corr > 0) {
msg_F2.payload.C[7] = F_in * C_in[7] / F2;
msg_F2.payload.C[8] = F_in * C_in[8] / F2;
msg_F2.payload.C[9] = F_in * C_in[9] / F2;
msg_F2.payload.C[10] = F_in * C_in[10] / F2;
msg_F2.payload.C[11] = F_in * C_in[11] / F2;
msg_F2.payload.C[12] = F_in * C_in[12] / F2;
}
msg_F2.payload.inlet = inlet_sludge;
send([msg_F1, msg_F2]);
break;
case "clock":
break;
default:
console.log("Unknown topic: " + msg.topic);
}
if (done) {
done();
}
});
}
RED.nodes.registerType("settling-basin", settler);
};

File diff suppressed because it is too large Load Diff

119
package-lock.json generated
View File

@@ -1,119 +0,0 @@
{
"name": "reactor",
"version": "0.0.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "reactor",
"version": "0.0.1",
"license": "SEE LICENSE",
"dependencies": {
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/RnD/generalFunctions.git",
"mathjs": "^14.5.2"
}
},
"node_modules/@babel/runtime": {
"version": "7.28.4",
"resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.28.4.tgz",
"integrity": "sha512-Q/N6JNWvIvPnLDvjlE1OUBLPQHH6l3CltCEsHIujp45zQUSSh8K+gHnaEX45yAT1nyngnINhvWtzN+Nb9D8RAQ==",
"license": "MIT",
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/complex.js": {
"version": "2.4.2",
"resolved": "https://registry.npmjs.org/complex.js/-/complex.js-2.4.2.tgz",
"integrity": "sha512-qtx7HRhPGSCBtGiST4/WGHuW+zeaND/6Ld+db6PbrulIB1i2Ev/2UPiqcmpQNPSyfBKraC0EOvOKCB5dGZKt3g==",
"license": "MIT",
"engines": {
"node": "*"
},
"funding": {
"type": "github",
"url": "https://github.com/sponsors/rawify"
}
},
"node_modules/decimal.js": {
"version": "10.6.0",
"resolved": "https://registry.npmjs.org/decimal.js/-/decimal.js-10.6.0.tgz",
"integrity": "sha512-YpgQiITW3JXGntzdUmyUR1V812Hn8T1YVXhCu+wO3OpS4eU9l4YdD3qjyiKdV6mvV29zapkMeD390UVEf2lkUg==",
"license": "MIT"
},
"node_modules/escape-latex": {
"version": "1.2.0",
"resolved": "https://registry.npmjs.org/escape-latex/-/escape-latex-1.2.0.tgz",
"integrity": "sha512-nV5aVWW1K0wEiUIEdZ4erkGGH8mDxGyxSeqPzRNtWP7ataw+/olFObw7hujFWlVjNsaDFw5VZ5NzVSIqRgfTiw==",
"license": "MIT"
},
"node_modules/fraction.js": {
"version": "5.3.4",
"resolved": "https://registry.npmjs.org/fraction.js/-/fraction.js-5.3.4.tgz",
"integrity": "sha512-1X1NTtiJphryn/uLQz3whtY6jK3fTqoE3ohKs0tT+Ujr1W59oopxmoEh7Lu5p6vBaPbgoM0bzveAW4Qi5RyWDQ==",
"license": "MIT",
"engines": {
"node": "*"
},
"funding": {
"type": "github",
"url": "https://github.com/sponsors/rawify"
}
},
"node_modules/generalFunctions": {
"version": "1.0.0",
"resolved": "git+https://gitea.centraal.wbd-rd.nl/RnD/generalFunctions.git#efc97d6cd17399391b011298e47e8c1b1599592d",
"license": "SEE LICENSE"
},
"node_modules/javascript-natural-sort": {
"version": "0.7.1",
"resolved": "https://registry.npmjs.org/javascript-natural-sort/-/javascript-natural-sort-0.7.1.tgz",
"integrity": "sha512-nO6jcEfZWQXDhOiBtG2KvKyEptz7RVbpGP4vTD2hLBdmNQSsCiicO2Ioinv6UI4y9ukqnBpy+XZ9H6uLNgJTlw==",
"license": "MIT"
},
"node_modules/mathjs": {
"version": "14.8.0",
"resolved": "https://registry.npmjs.org/mathjs/-/mathjs-14.8.0.tgz",
"integrity": "sha512-DN4wmAjNzFVJ9vHqpAJ3vX0UF306u/1DgGKh7iVPuAFH19JDRd9NAaQS764MsKbSwDB6uBSkQEmgVmKdgYaCoQ==",
"license": "Apache-2.0",
"dependencies": {
"@babel/runtime": "^7.26.10",
"complex.js": "^2.2.5",
"decimal.js": "^10.4.3",
"escape-latex": "^1.2.0",
"fraction.js": "^5.2.1",
"javascript-natural-sort": "^0.7.1",
"seedrandom": "^3.0.5",
"tiny-emitter": "^2.1.0",
"typed-function": "^4.2.1"
},
"bin": {
"mathjs": "bin/cli.js"
},
"engines": {
"node": ">= 18"
}
},
"node_modules/seedrandom": {
"version": "3.0.5",
"resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-3.0.5.tgz",
"integrity": "sha512-8OwmbklUNzwezjGInmZ+2clQmExQPvomqjL7LFqOYqtmuxRgQYqOD3mHaU+MvZn5FLUeVxVfQjwLZW/n/JFuqg==",
"license": "MIT"
},
"node_modules/tiny-emitter": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/tiny-emitter/-/tiny-emitter-2.1.0.tgz",
"integrity": "sha512-NB6Dk1A9xgQPMoGqC5CVXn123gWyte215ONT5Pp5a0yt4nlEoO1ZWeCwpncaekPHXO60i47ihFnZPiRPjRMq4Q==",
"license": "MIT"
},
"node_modules/typed-function": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/typed-function/-/typed-function-4.2.1.tgz",
"integrity": "sha512-EGjWssW7Tsk4DGfE+5yluuljS1OGYWiI1J6e8puZz9nTMM51Oug8CD5Zo4gWMsOhq5BI+1bF+rWTm4Vbj3ivRA==",
"license": "MIT",
"engines": {
"node": ">= 18"
}
}
}
}

View File

@@ -11,6 +11,7 @@
"activated sludge",
"wastewater",
"biological model",
"EVOLV",
"node-red"
],
"license": "SEE LICENSE",
@@ -21,9 +22,7 @@
},
"node-red": {
"nodes": {
"reactor": "reactor.js",
"recirculation-pump": "additional_nodes/recirculation-pump.js",
"settling-basin": "additional_nodes/settling-basin.js"
"reactor": "reactor.js"
}
},
"dependencies": {

View File

@@ -2,7 +2,7 @@
<script type="text/javascript">
RED.nodes.registerType("reactor", {
category: "WWTP",
category: "EVOLV",
color: "#c4cce0",
defaults: {
name: { value: "" },
@@ -10,8 +10,6 @@
volume: { value: 0., required: true },
length: { value: 0.},
resolution_L: { value: 0.},
alpha: {value: 0},
n_inlets: { value: 1, required: true},
kla: { value: null },
S_O_init: { value: 0., required: true },
@@ -33,7 +31,7 @@
enableLog: { value: false },
logLevel: { value: "error" },
positionVsParent: { value: "" },
positionVsParent: { value: "" }
},
inputs: 1,
outputs: 3,
@@ -58,10 +56,6 @@
type:"num",
types:["num"]
});
$("#node-input-n_inlets").typedInput({
type:"num",
types:["num"]
});
$("#node-input-length").typedInput({
type:"num",
types:["num"]
@@ -97,10 +91,6 @@
$(".PFR").show();
}
});
$("#node-input-alpha").typedInput({
type:"num",
types:["num"]
})
$("#node-input-timeStep").typedInput({
type:"num",
types:["num"]
@@ -112,6 +102,19 @@
} else {
$(".PFR").show();
}
const updateDx = () => {
const length = parseFloat($("#node-input-length").val()) || 0;
const resolution = parseFloat($("#node-input-resolution_L").val()) || 1;
const dx = resolution > 0 ? (length / resolution).toFixed(6) : "N/A";
$("#dx-output").text(dx + " m");
};
// Set up event listeners for real-time updates
$("#node-input-length, #node-input-resolution_L").on("change keyup", updateDx);
// Initial calculation
updateDx();
},
oneditsave: function() {
// save logger fields
@@ -128,10 +131,6 @@
if (isNaN(volume) || volume <= 0) {
RED.notify("Fluid volume not set correctly", {type: "error"});
}
let n_inlets = parseInt($("#node-input-n_inlets").typedInput("value"));
if (isNaN(n_inlets) || n_inlets < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
@@ -158,16 +157,9 @@
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label>
<input type="text" id="node-input-resolution_L" placeholder="#">
</div>
<div class="PFR">
<p> Inlet boundary condition parameter &alpha; (&alpha; = 0: Danckwerts BC / &alpha; = 1: Dirichlet BC) </p>
<div class="form-row">
<label for="node-input-alpha"><i class="fa fa-tag"></i>Adjustable parameter BC</label>
<input type="text" id="node-input-alpha">
</div>
</div>
<div class="form-row">
<label for="node-input-n_inlets"><i class="fa fa-tag"></i> Number of inlets</label>
<input type="text" id="node-input-n_inlets" placeholder="#">
<div class="form-row PFR">
<label for="node-input-dx"><i class="fa fa-tag"></i> dx (length / resolution) [m]</label>
<span id="dx-output" style="display: inline-block; padding: 8px; font-weight: bold; color: #333;">--</span>
</div>
<h3> Internal mass transfer calculation (optional) </h3>
<div class="form-row">
@@ -240,7 +232,6 @@
<!-- Position fields will be injected here -->
<div id="position-fields-placeholder"></div>
</script>
<script type="text/html" data-help-name="reactor">

View File

@@ -34,7 +34,6 @@ class nodeClass {
switch (msg.topic) {
case "clock":
this.source.updateState(msg.timestamp);
send([msg, null, null]);
break;
case "Fluent":
this.source.setInfluent = msg;
@@ -42,9 +41,6 @@ class nodeClass {
case "OTR":
this.source.setOTR = msg;
break;
case "Temperature":
this.source.setTemperature = msg;
break;
case "Dispersion":
this.source.setDispersion = msg;
break;
@@ -87,8 +83,6 @@ class nodeClass {
volume: parseFloat(uiConfig.volume),
length: parseFloat(uiConfig.length),
resolution_L: parseInt(uiConfig.resolution_L),
alpha: parseFloat(uiConfig.alpha),
n_inlets: parseInt(uiConfig.n_inlets),
kla: parseFloat(uiConfig.kla),
initialState: [
parseFloat(uiConfig.S_O_init),

View File

@@ -1,4 +1,67 @@
const math = require('mathjs')
const math = require('mathjs');
const ASM_CONSTANTS = {
S_O_INDEX: 0,
S_NH_INDEX: 3,
S_NO_INDEX: 5,
NUM_SPECIES: 13
};
const KINETIC_CONSTANTS = {
// Hydrolysis
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.5, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 10., // saturation constant S_s [g COD m-3]
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 3., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.3, // aerobic respiration rate [d-1]
b_H_NO: 0.15, // anoxic respiration rate [d-1]
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.3, // maximum specific growth rate [d-1]
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.20, // aerobic respiration rate [d-1]
b_A_NO: 0.10 // anoxic respiration rate [d-1]
};
const STOICHIOMETRIC_CONSTANTS = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
@@ -10,65 +73,13 @@ class ASM3 {
* Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = {
// Hydrolysis
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.5, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 10., // saturation constant S_s [g COD m-3]
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 3., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.3, // aerobic respiration rate [d-1]
b_H_NO: 0.15, // anoxic respiration rate [d-1]
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.3, // maximum specific growth rate [d-1]
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.20, // aerobic respiration rate [d-1]
b_A_NO: 0.10 // anoxic respiration rate [d-1]
};
this.kin_params = KINETIC_CONSTANTS;
/**
* Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
this.stoi_params = STOICHIOMETRIC_CONSTANTS;
/**
* Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters.
@@ -208,4 +219,4 @@ class ASM3 {
}
}
module.exports = ASM3;
module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };

View File

@@ -1,4 +1,67 @@
const math = require('mathjs')
const math = require('mathjs');
const ASM_CONSTANTS = {
S_O_INDEX: 0,
S_NH_INDEX: 3,
S_NO_INDEX: 5,
NUM_SPECIES: 13
};
const KINETIC_CONSTANTS = {
// Hydrolysis
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.6, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 2., // saturation constant S_s [g COD m-3]
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 2., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.2, // aerobic respiration rate [d-1]
b_H_NO: 0.1, // anoxic respiration rate [d-1]
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.0, // maximum specific growth rate [d-1]
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.15, // aerobic respiration rate [d-1]
b_A_NO: 0.05 // anoxic respiration rate [d-1]
};
const STOICHIOMETRIC_CONSTANTS = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3).
@@ -10,65 +73,13 @@ class ASM3 {
* Kinetic parameters for ASM3 at 20 C.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = {
// Hydrolysis
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.6, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 2., // saturation constant S_s [g COD m-3]
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 2., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.2, // aerobic respiration rate [d-1]
b_H_NO: 0.1, // anoxic respiration rate [d-1]
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.0, // maximum specific growth rate [d-1]
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.15, // aerobic respiration rate [d-1]
b_A_NO: 0.05 // anoxic respiration rate [d-1]
};
this.kin_params = KINETIC_CONSTANTS;
/**
* Stoichiometric and composition parameters for ASM3.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
this.stoi_params = STOICHIOMETRIC_CONSTANTS;
/**
* Temperature theta parameters for ASM3.
@@ -208,4 +219,4 @@ class ASM3 {
}
}
module.exports = ASM3;
module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };

View File

@@ -1,4 +1,4 @@
const ASM3 = require('./reaction_modules/asm3_class.js');
const { ASM3, ASM_CONSTANTS } = require('./reaction_modules/asm3_class.js');
const { create, all, isArray } = require('mathjs');
const { assertNoNaN } = require('./utils.js');
const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions');
@@ -10,10 +10,9 @@ const mathConfig = {
const math = create(all, mathConfig);
const S_O_INDEX = 0;
const NUM_SPECIES = 13;
const BC_PADDING = 2;
const BC_PADDING = 2; // Boundary Condition padding for open boundaries in extendedState variable
const DEBUG = false;
const DAY2MS = 1000 * 60 * 60 * 24; // convert between days and milliseconds
class Reactor {
/**
@@ -26,27 +25,27 @@ class Reactor {
this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name);
this.emitter = new EventEmitter();
this.measurements = new MeasurementContainer();
this.upstreamReactor = null;
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
this.parent = []; // Gets assigned via child registration
this.childRegistrationUtils = new childRegistrationUtils(this); // child registration utility
// placeholder variables for children and parents
this.upstreamReactor = null;
this.downstreamReactor = null;
this.returnPump = null;
this.asm = new ASM3();
this.asm = new ASM3(); // Reaction model
this.volume = config.volume; // fluid volume reactor [m3]
this.Fs = Array(config.n_inlets).fill(0); // fluid debits per inlet [m3 d-1]
this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(NUM_SPECIES).fill(0)); // composition influents
this.Fs = [0]; // fluid debits per inlet [m3 d-1]
this.Cs_in = [Array(ASM_CONSTANTS.NUM_SPECIES).fill(0)]; // composition influents
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1 m-3]
this.temperature = 20; // temperature [C]
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
this.currentTime = Date.now(); // milliseconds since epoch [ms]
this.currentTime = null; // milliseconds since epoch [ms]
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step in seconds, converted to days.
this.speedUpFactor = 100; // speed up factor for simulation, 60 means 1 minute per simulated second
this.speedUpFactor = 1; // speed up factor for simulation, 60 means 1 minute per simulated second
}
/**
@@ -54,9 +53,15 @@ class Reactor {
* @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
*/
set setInfluent(input) {
let index_in = input.payload.inlet;
this.Fs[index_in] = input.payload.F;
this.Cs_in[index_in] = input.payload.C;
const i_in = input.payload.inlet;
if (this.Fs.length <= i_in) {
this.logger.debug(`Adding new inlet index ${i_in}.`);
this.Fs.push(0);
this.Cs_in.push(Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
this.setInfluent = input;
}
this.Fs[i_in] = input.payload.F;
this.Cs_in[i_in] = input.payload.C;
}
/**
@@ -69,13 +74,20 @@ class Reactor {
/**
* Getter for effluent data.
* @returns {object} Effluent data object (msg), defaults to inlet 0.
* @returns {object} Effluent data object (msg).
*/
get getEffluent() { // getter for Effluent, defaults to inlet 0
if (isArray(this.state.at(-1))) {
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state.at(-1) }, timestamp: this.currentTime };
get getEffluent() {
const Cs = isArray(this.state.at(-1)) ? this.state.at(-1) : this.state;
const effluent = [{ topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: Cs }, timestamp: this.currentTime }];
if (this.returnPump) {
const recirculationFlow = this.returnPump.measurements.type("flow").variant("measured").position("atEquipment").getCurrentValue();
// constrain flow to prevent negatives
const F_main = Math.max(effluent[0].payload.F - recirculationFlow, 0);
const F_sidestream = effluent[0].payload.F < recirculationFlow ? effluent[0].payload.F : recirculationFlow;
effluent[0].payload.F = F_main;
effluent.push({ topic: "Fluent", payload: { inlet: 1, F: F_sidestream, C: Cs }, timestamp: this.currentTime });
}
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state }, timestamp: this.currentTime };
return effluent;
}
/**
@@ -85,7 +97,7 @@ class Reactor {
* @returns {number} - Calculated OTR [g O2 d-1 m-3].
*/
_calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
let S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
const S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
return this.kla * (S_O_sat - S_O);
}
@@ -102,16 +114,30 @@ class Reactor {
}
}
/**
* Register child function required for child registration.
* @param {object} child
* @param {string} softwareType
*/
registerChild(child, softwareType) {
if(!child) {
this.logger.error(`Invalid ${softwareType} child provided.`);
return;
}
switch (softwareType) {
case "measurement":
this.logger.debug(`Registering measurement child.`);
this.logger.debug(`Registering measurement child...`);
this._connectMeasurement(child);
break;
case "reactor":
this.logger.debug(`Registering reactor child.`);
this.logger.debug(`Registering reactor child...`);
this._connectReactor(child);
break;
case "machine":
this.logger.debug(`Registering machine child...`);
this._connectMachine(child);
break;
default:
this.logger.error(`Unrecognized softwareType: ${softwareType}`);
@@ -119,11 +145,6 @@ class Reactor {
}
_connectMeasurement(measurementChild) {
if (!measurementChild) {
this.logger.warn("Invalid measurement provided.");
return;
}
const position = measurementChild.config.functionality.positionVsParent;
const measurementType = measurementChild.config.asset.type;
const eventName = `${measurementType}.measured.${position}`;
@@ -145,28 +166,26 @@ class Reactor {
_connectReactor(reactorChild) {
if (!reactorChild) {
this.logger.warn("Invalid reactor provided.");
return;
}
if (reactorChild.functionality.positionVsParent != "upstream") {
this.logger.warn("Reactor children of reactors should always be upstream.");
}
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
if (reactorChild.config.functionality.positionVsParent != "upstream") {
this.logger.warn("Reactor children of other reactors should always be upstream!");
}
// set upstream and downstream reactor variable in current and child nodes respectively for easy access
this.upstreamReactor = reactorChild;
reactorChild.downstreamReactor = this;
reactorChild.emitter.on("stateChange", (data) => {
reactorChild.emitter.on("stateChange", (eventData) => { // Triggers state update in downstream reactor.
this.logger.debug(`State change of upstream reactor detected.`);
this.updateState(data);
this.updateState(eventData);
});
}
_connectMachine(machineChild) {
if (machineChild.config.functionality.positionVsParent == "downstream") {
machineChild.upstreamSource = this;
this.returnPump = machineChild;
}
}
_updateMeasurement(measurementType, value, position, context) {
this.logger.debug(`---------------------- updating ${measurementType} ------------------ `);
@@ -186,22 +205,32 @@ class Reactor {
* Update the reactor state based on the new time.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
updateState(newTime = Date.now()) { // expect update with timestamp
const day2ms = 1000 * 60 * 60 * 24;
if (this.upstreamReactor) {
this.setInfluent = this.upstreamReactor.getEffluent;
updateState(newTime) {
if (!this.currentTime) { // initialise currentTime variable
this.currentTime = newTime;
return;
}
let n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*day2ms));
if (n_iter) {
let n = 0;
while (n < n_iter) {
this.tick(this.timeStep);
n += 1;
}
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
this.emitter.emit("stateChange", this.currentTime);
if (this.upstreamReactor) { // grab main effluent upstream reactor
this.setInfluent = this.upstreamReactor.getEffluent[0];
}
const n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*DAY2MS));
if (n_iter == 0) { // no update required, change in currentTime smaller than time step
return;
}
let n = 0;
while (n < n_iter) {
this.tick(this.timeStep);
n += 1;
}
this.currentTime += n_iter * this.timeStep * DAY2MS / this.speedUpFactor;
this.emitter.emit("stateChange", this.currentTime); // update downstream reactors
if (this.returnPump) { // update recirculation pump state
this.returnPump.updateSourceSink();
}
}
}
@@ -216,6 +245,23 @@ class Reactor_CSTR extends Reactor {
this.state = config.initialState;
}
_updateMeasurement(measurementType, value, position, context) {
switch(measurementType) {
case "quantity (oxygen)":
this.state[ASM_CONSTANTS.S_O_INDEX] = value;
break;
case "quantity (ammonium)":
this.state[ASM_CONSTANTS.S_NH_INDEX] = value;
break;
case "quantity (nox)":
this.state[ASM_CONSTANTS.S_NO_INDEX] = value;
break;
default:
super._updateMeasurement(measurementType, value, position, context);
}
}
/**
* Tick the reactor state using the forward Euler method.
* @param {number} time_step - Time step for the simulation [d].
@@ -225,8 +271,8 @@ class Reactor_CSTR extends Reactor {
const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0];
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
const reaction = this.asm.compute_dC(this.state, this.temperature);
const transfer = Array(NUM_SPECIES).fill(0.0);
transfer[S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
const transfer = Array(ASM_CONSTANTS.NUM_SPECIES).fill(0.0);
transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[ASM_CONSTANTS.S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
@@ -252,10 +298,8 @@ class Reactor_PFR extends Reactor {
this.d_x = this.length / this.n_x;
this.A = this.volume / this.length; // crosssectional area [m2]
this.alpha = config.alpha;
this.state = Array.from(Array(this.n_x), () => config.initialState.slice());
this.extendedState = Array.from(Array(this.n_x + 2*BC_PADDING), () => new Array(NUM_SPECIES).fill(0));
this.extendedState = Array.from(Array(this.n_x + 2*BC_PADDING), () => new Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
// initialise extended state
this.state.forEach((row, i) => this.extendedState[i+BC_PADDING] = row);
@@ -277,13 +321,23 @@ class Reactor_PFR extends Reactor {
this.D = this._constrainDispersion(input.payload);
}
_connectReactor(reactorChild) {
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
}
super._connectReactor(reactorChild);
}
/**
* Update the reactor state based on the new time. Performs checks specific to PFR.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
updateState(newTime) {
super.updateState(newTime);
// let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
this.D = this._constrainDispersion(this.D);
let Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
this.D = this._constrainDispersion(this.D); // constrains D to minimum dispersion, so that local Péclet number is always above 2
const Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
// (Pe_local >= 2) && this.logger.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
(Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
if(DEBUG) {
@@ -306,15 +360,15 @@ class Reactor_PFR extends Reactor {
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.extendedState);
const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.extendedState);
const reaction = this.extendedState.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
const transfer = Array.from(Array(this.n_x+2*BC_PADDING), () => new Array(NUM_SPECIES).fill(0));
const transfer = Array.from(Array(this.n_x+2*BC_PADDING), () => new Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
transfer[i][S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
}
} else {
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
transfer[i][S_O_INDEX] = this._calcOTR(this.extendedState[i][S_O_INDEX], this.temperature) * this.n_x/(this.n_x-2);
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this._calcOTR(this.extendedState[i][ASM_CONSTANTS.S_O_INDEX], this.temperature);
}
}
@@ -336,10 +390,19 @@ class Reactor_PFR extends Reactor {
}
_updateMeasurement(measurementType, value, position, context) {
const grid_pos = Math.round(context.distance / this.config.length * this.n_x);
// naive approach for reconciling measurements and simulation
// could benefit from Kalman filter?
switch(measurementType) {
case "quantity (oxygen)":
let grid_pos = Math.round(context.distance / this.config.length * this.n_x);
this.state[grid_pos][S_O_INDEX] = value; // naive approach for reconciling measurements and simulation
this.state[grid_pos][ASM_CONSTANTS.S_O_INDEX] = value;
break;
case "quantity (ammonium)":
this.state[grid_pos][ASM_CONSTANTS.S_NH_INDEX] = value;
break;
case "quantity (nox)":
this.state[grid_pos][ASM_CONSTANTS.S_NO_INDEX] = value;
break;
default:
super._updateMeasurement(measurementType, value, position, context);
@@ -352,38 +415,36 @@ class Reactor_PFR extends Reactor {
* for outlet, apply regular Danckwerts BC (Neumann BC with no flux)
*/
_applyBoundaryConditions() {
if (this.upstreamReactor) {
for (let i = 0; i < BC_PADDING; i++) {
this.extendedState[i] = this.upstreamReactor.state.at(i-BC_PADDING);
}
// Upstream BC
if (this.upstreamReactor && this.upstreamReactor.config.reactor_type == "PFR") {
// Open boundary, if upstream reactor is PFR
this.extendedState.splice(0, BC_PADDING, ...this.upstreamReactor.state.slice(-BC_PADDING));
} else {
if (math.sum(this.Fs) > 0) { // Danckwerts BC
if (math.sum(this.Fs) > 0) {
// Danckwerts BC
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
const BC_dispersion_term = (1-this.alpha)*this.D*this.A/(math.sum(this.Fs)*this.d_x);
const BC_dispersion_term = this.D*this.A/(math.sum(this.Fs)*this.d_x);
this.extendedState[BC_PADDING] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, this.extendedState[BC_PADDING+1])));
// Numerical boundary condition (first-order accurate)
this.extendedState[BC_PADDING-1] = math.add(math.multiply(2, this.extendedState[BC_PADDING]), math.multiply(-2, this.extendedState[BC_PADDING+2]), this.extendedState[BC_PADDING+3]);
} else {
for (let i = 0; i < BC_PADDING; i++) {
this.extendedState[i] = this.extendedState[BC_PADDING];
}
// Neumann BC (no flux)
this.extendedState.fill(this.extendedState[BC_PADDING], 0, BC_PADDING);
}
}
if (this.downstreamReactor) {
for (let i = 0; i < BC_PADDING; i++) {
this.extendedState[this.n_x+BC_PADDING+i] = this.downstreamReactor.state[i];
}
// Downstream BC
if (this.downstreamReactor && this.downstreamReactor.config.reactor_type == "PFR") {
// Open boundary, if downstream reactor is PFR
this.extendedState.splice(this.n_x+BC_PADDING, BC_PADDING, ...this.downstreamReactor.state.slice(0, BC_PADDING));
} else {
// Neumann BC (no flux)
for (let i = 0; i < BC_PADDING; i++) {
this.extendedState[BC_PADDING+this.n_x+i] = this.extendedState.at(-1-BC_PADDING);
}
this.extendedState.fill(this.extendedState.at(-1-BC_PADDING), BC_PADDING+this.n_x);
}
}
/**
* Create finite difference first derivative operator.
* @returns {Array} - First derivative operator matrix.
*/
_makeDoperator() { // create gradient operator
const D_size = this.n_x+2*BC_PADDING;
@@ -399,7 +460,6 @@ class Reactor_PFR extends Reactor {
/**
* Create central finite difference second derivative operator.
* @returns {Array} - Second derivative operator matrix.
*/
_makeD2operator() { // create the central second derivative operator
const D_size = this.n_x+2*BC_PADDING;
@@ -412,6 +472,9 @@ class Reactor_PFR extends Reactor {
return D2;
}
/**
* Constrains dispersion so that local Péclet number stays below 2. Needed for stable central differencing method.
*/
_constrainDispersion(D) {
const Dmin = math.sum(this.Fs) * this.d_x / (1.999 * this.A);
if (D < Dmin) {
@@ -422,17 +485,4 @@ class Reactor_PFR extends Reactor {
}
}
module.exports = { Reactor_CSTR, Reactor_PFR };
// DEBUG
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
// const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state);
// Reactor.Cs_in[0] = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.];
// Reactor.Fs[0] = 10;
// Reactor.D = 0.01;
// let N = 0;
// while (N < 5000) {
// console.log(Reactor.tick(0.001));
// N += 1;
// }
module.exports = { Reactor_CSTR, Reactor_PFR };