16 Commits

Author SHA1 Message Date
7eecbddd19 Add example flow 2025-11-28 14:29:53 +01:00
d56e422d90 Shift fields around in node parameters 2025-11-28 11:52:40 +01:00
61f911af6b Update README.md 2025-11-28 10:51:10 +00:00
9c3a32c2cb Merge pull request 'Final bug fixes and documentation' (#6) from dev-Pieter into main
Reviewed-on: #6
2025-11-21 13:48:18 +00:00
033a56a9e0 Enhance comments and documentation in Reactor classes for clarity and maintainability 2025-11-21 12:29:46 +01:00
dd70b8c890 Fix CSTR PFR distinctions 2025-11-21 11:02:40 +01:00
3d93f2a7b9 Fix minor bug 2025-11-14 14:48:39 +01:00
cc89833530 Update state handling in reactor class and optimize time iteration logic 2025-11-14 13:11:09 +01:00
f3bbf63602 Add return pump update in reactor state change 2025-11-14 12:55:34 +01:00
70af0885e3 Prepare for working with relative time 2025-11-14 12:34:52 +01:00
dbfc4a81b2 Remove unused / depreciated input handling 2025-11-14 12:33:16 +01:00
f14e2c8d8e Reformat asm constants 2025-11-13 16:52:38 +01:00
7e34b9aa71 Add real-time calculation for dx based on length and resolution inputs 2025-11-13 13:59:56 +01:00
ff814074a4 Merge pull request 'Minor bug fixes, code perfomance and clarity improvements' (#5) from dev-Pieter into main
Reviewed-on: #5
2025-11-12 09:27:38 +00:00
2b37163a8a Minor fixes 2025-11-07 16:51:48 +01:00
a106276ca6 Add additional ASM constants, add other sensor handling, fix bug in kla model 2025-11-07 11:59:24 +01:00
7 changed files with 1089 additions and 171 deletions

View File

@@ -1,17 +1,20 @@
# reactor # Reactor: Advanced Hydraulic Tank & Biological Process Simulator
Reactor: Advanced Hydraulic Tank & Biological Process Simulator A comprehensive reactor class for wastewater treatment simulation featuring non-ideal plug flow hydraulics and ASM3 biological modeling.
A comprehensive reactor class for wastewater treatment simulation featuring plug flow hydraulics, ASM1-ASM3 biological modeling, and multi-sectional concentration tracking. Implements hydraulic retention time calculations, dispersion modeling, and real-time biological reaction kinetics for accurate process simulation. ## How to use this Node
### Set Node Properties
- Set reactor type: Continuously Stirred Tank Reactor (CSTR) or Plug Flow Reactor (PFR)
- Configure reactor sizing: Set reactor volume [ $m^3$ ] and (for PFRs) set the reactor length [ $m$ ]
- (For PFRs) set reactor spatial resolution: A value of 10 or 20 is good. A higher resolution means more accurate simulation, at higher computational expense. Note that connected reactors must have similar Δx values.
- Set initial state of reactor: set the intial concentrations of all relevant reaction species.
- (Optional) set $k_L a$ to calculate OTR internally, rather than providing it explicitly, using simple mass transfer model.
Key Features: ### Accepted Node inputs
- \{ topic: clock, payload: \<timestamp [ $ms$ ]\> \} - **required** clock signal to make reactor update state.
Plug Flow Hydraulics: Multi-section reactor with configurable sectioning factor and dispersion modeling - \{ topic: Fluent, payload: \{ F: \<flow rate [ $m^3 d^{-1}$ ]\>, C: \<array with concentrations\> \} \} - sets inflow composition and flow rate.
ASM1 Integration: Complete biological nutrient removal modeling with 13 state variables (COD, nitrogen, phosphorus) - \{ topic: Dispersion, payload: \<dispersion coefficient in [ $m d^{-2}$ ]\> \} - sets PFR dispersion coefficient.
Dynamic Volume Control: Automatic section management with overflow handling and retention time calculations - \{ topic: OTR, payload: \<oxygen transfer rate [ $ g d^{-1} m^{-3}$ ]\> \} - sets current oxygen transfer rate.
Oxygen Transfer: Saturation-limited O2 transfer with Fick's law slowdown effects and solubility curves
Real-time Kinetics: Continuous biological reaction rate calculations with configurable time acceleration
Weighted Averaging: Volume-based concentration mixing for accurate mass balance calculations
Child Registration: Integration with diffuser systems and upstream/downstream reactor networks
Supports complex biological treatment train modeling with temperature compensation, sludge calculations, and comprehensive process monitoring for wastewater treatment plant optimization and regulatory compliance.
## Troubleshooting
Check for possible numerical warnings. These tell you which simulation parameters to change. If solutions appear to be oscillate, try reducing the time step. If solutions appear to be too dispersive, try increasing the reactor resolution.

View File

@@ -0,0 +1,838 @@
[
{
"id": "a6b85e226d144df1",
"type": "tab",
"label": "Flow 3",
"disabled": false,
"info": "",
"env": []
},
{
"id": "a94c85d65c71b66a",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "Influx composition 1",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
},
{
"p": "timestamp",
"v": "",
"vt": "date"
}
],
"repeat": "864",
"crontab": "",
"once": true,
"onceDelay": "5",
"topic": "Fluent",
"payload": "{\"inlet\":0,\"F\":6600,\"C\":[0,30,100,16,0,0,5,25,75,30,0,0,125]}",
"payloadType": "json",
"x": 260,
"y": 240,
"wires": [
[
"b726c5be41c24dcb"
]
]
},
{
"id": "0ebfbbf57bba79f1",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "timestamp",
"v": "",
"vt": "date"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "1",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "clock",
"x": 300,
"y": 280,
"wires": [
[
"b726c5be41c24dcb"
]
]
},
{
"id": "cd0e4a78d1a59a6e",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "Dispersion",
"payload": "100",
"payloadType": "num",
"x": 260,
"y": 320,
"wires": [
[
"b726c5be41c24dcb",
"b0819ff9a4010227"
]
]
},
{
"id": "b726c5be41c24dcb",
"type": "reactor",
"z": "a6b85e226d144df1",
"name": "Anoxic 1",
"reactor_type": "PFR",
"volume": "730",
"length": "10",
"resolution_L": "20",
"kla": "",
"S_O_init": 0,
"S_I_init": 30,
"S_S_init": 100,
"S_NH_init": 16,
"S_N2_init": 0,
"S_NO_init": 0,
"S_HCO_init": 5,
"X_I_init": 25,
"X_S_init": 75,
"X_H_init": 30,
"X_STO_init": 0,
"X_A_init": "30",
"X_TS_init": "132",
"timeStep": "2",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "upstream",
"x": 540,
"y": 240,
"wires": [
[
"057ab2dcd4739aef"
],
[],
[
"b0819ff9a4010227",
"214aff7330e81d3f",
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "b0819ff9a4010227",
"type": "reactor",
"z": "a6b85e226d144df1",
"name": "Aerobic 1",
"reactor_type": "PFR",
"volume": "1460",
"length": "20",
"resolution_L": "40",
"kla": "2400",
"S_O_init": 0,
"S_I_init": 30,
"S_S_init": 100,
"S_NH_init": 16,
"S_N2_init": 0,
"S_NO_init": 0,
"S_HCO_init": 5,
"X_I_init": 25,
"X_S_init": 75,
"X_H_init": "500",
"X_STO_init": 0,
"X_A_init": "30",
"X_TS_init": "132",
"timeStep": "2",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "upstream",
"x": 940,
"y": 240,
"wires": [
[
"e0049d66fefeb3e6"
],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "214aff7330e81d3f",
"type": "rotatingMachine",
"z": "a6b85e226d144df1",
"speed": 1,
"startup": 0,
"warmup": 0,
"shutdown": 0,
"cooldown": 0,
"machineCurve": {},
"flowNumber": "1",
"uuid": "",
"supplier": "Hidrostal",
"category": "Pumps",
"assetType": "Centrifugal",
"model": "hidrostal-H05K-S03R",
"unit": "l/s",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "downstream",
"positionIcon": "→",
"hasDistance": false,
"distance": "",
"x": 740,
"y": 340,
"wires": [
[],
[],
[
"b0819ff9a4010227"
]
]
},
{
"id": "0be74d5c77febec1",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 900,
"o_max": 1200,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Flow",
"model": "VegaFlow 10",
"unit": "m³/h",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 600,
"y": 460,
"wires": [
[],
[],
[
"214aff7330e81d3f"
]
]
},
{
"id": "668f41a05698f21b",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "execSequence",
"payload": "{\"source\":\"parent\",\"action\":\"execSequence\",\"parameter\":\"startup\"}",
"payloadType": "json",
"x": 330,
"y": 400,
"wires": [
[
"214aff7330e81d3f",
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "47120bc82aa7bf49",
"type": "settler",
"z": "a6b85e226d144df1",
"name": "",
"model": "mb-model",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "atEquipment",
"x": 1100,
"y": 400,
"wires": [
[
"b1af49d1d0eb6783",
"6baffb7954cf0cce"
],
[],
[]
]
},
{
"id": "2ec38c4ae9aa6e7e",
"type": "rotatingMachine",
"z": "a6b85e226d144df1",
"speed": 1,
"startup": 0,
"warmup": 0,
"shutdown": 0,
"cooldown": 0,
"machineCurve": {},
"flowNumber": "2",
"uuid": "",
"supplier": "Hidrostal",
"category": "Pumps",
"assetType": "Centrifugal",
"model": "hidrostal-H05K-S03R",
"unit": "l/s",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "downstream",
"positionIcon": "→",
"hasDistance": false,
"distance": "",
"x": 860,
"y": 460,
"wires": [
[],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "21eff612371519c5",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 500,
"o_max": 660,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Flow",
"model": "VegaFlow 10",
"unit": "m³/h",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 720,
"y": 580,
"wires": [
[],
[],
[
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "057ab2dcd4739aef",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\") {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO},\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 720,
"y": 180,
"wires": [
[
"02a932317c76721e"
]
]
},
{
"id": "02a932317c76721e",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "ae38454098a37db0",
"name": "Anoxic reactor",
"label": "Anoxic reactor",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 920,
"y": 180,
"wires": [
[]
]
},
{
"id": "e0049d66fefeb3e6",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\") {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO},\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1140,
"y": 220,
"wires": [
[
"70eeb4c8caa2db77"
]
]
},
{
"id": "70eeb4c8caa2db77",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "ae38454098a37db0",
"name": "Aerobic reactor",
"label": "Aerobic reactor / recirculation",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1340,
"y": 220,
"wires": [
[]
]
},
{
"id": "b1af49d1d0eb6783",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\" || msg.payload.inlet == 0) {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1320,
"y": 380,
"wires": [
[
"0a3ffa69046a4844"
]
]
},
{
"id": "0a3ffa69046a4844",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "de8b029d69f26c0e",
"name": "Sludge composition",
"label": "Sludge composition",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1530,
"y": 380,
"wires": [
[]
]
},
{
"id": "272b4b0050479d13",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 3200,
"o_max": 4000,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Quantity (TSS)",
"model": "VegaSolidsProbe",
"unit": "g/m³",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 930,
"y": 580,
"wires": [
[],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "6baffb7954cf0cce",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\" || msg.payload.inlet == 1 || msg.payload.inlet == 2) {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1320,
"y": 420,
"wires": [
[
"df288814a2a9a2b1"
]
]
},
{
"id": "df288814a2a9a2b1",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "de8b029d69f26c0e",
"name": "Effluent",
"label": "Effluent",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1520,
"y": 420,
"wires": [
[]
]
},
{
"id": "ae38454098a37db0",
"type": "ui-group",
"name": "Group 3",
"page": "ca564642bfc5606c",
"width": 6,
"height": 1,
"order": -1,
"showTitle": true,
"className": "",
"visible": "true",
"disabled": "false",
"groupType": "default"
},
{
"id": "de8b029d69f26c0e",
"type": "ui-group",
"name": "Group 4",
"page": "ca564642bfc5606c",
"width": 6,
"height": 1,
"order": -1,
"showTitle": true,
"className": "",
"visible": "true",
"disabled": "false",
"groupType": "default"
},
{
"id": "ca564642bfc5606c",
"type": "ui-page",
"name": "PFR",
"ui": "90eb5f47d95b4087",
"path": "/page2",
"icon": "home",
"layout": "grid",
"theme": "2c8bcaa0046b4323",
"breakpoints": [
{
"name": "Default",
"px": "0",
"cols": "3"
},
{
"name": "Tablet",
"px": "576",
"cols": "6"
},
{
"name": "Small Desktop",
"px": "768",
"cols": "9"
},
{
"name": "Desktop",
"px": "1024",
"cols": "12"
}
],
"order": -1,
"className": "",
"visible": "true",
"disabled": "false"
},
{
"id": "90eb5f47d95b4087",
"type": "ui-base",
"name": "Dashboard",
"path": "/dashboard",
"appIcon": "",
"includeClientData": true,
"acceptsClientConfig": [
"ui-notification",
"ui-control"
],
"showPathInSidebar": false,
"headerContent": "page",
"navigationStyle": "default",
"titleBarStyle": "default",
"showReconnectNotification": true,
"notificationDisplayTime": 1,
"showDisconnectNotification": true,
"allowInstall": true
},
{
"id": "2c8bcaa0046b4323",
"type": "ui-theme",
"name": "Default",
"colors": {
"surface": "#ffffff",
"primary": "#0094ce",
"bgPage": "#eeeeee",
"groupBg": "#ffffff",
"groupOutline": "#cccccc"
},
"sizes": {
"density": "default",
"pagePadding": "12px",
"groupGap": "12px",
"groupBorderRadius": "4px",
"widgetGap": "12px"
}
}
]

View File

@@ -31,7 +31,7 @@
enableLog: { value: false }, enableLog: { value: false },
logLevel: { value: "error" }, logLevel: { value: "error" },
positionVsParent: { value: "" }, positionVsParent: { value: "" }
}, },
inputs: 1, inputs: 1,
outputs: 3, outputs: 3,
@@ -102,6 +102,19 @@
} else { } else {
$(".PFR").show(); $(".PFR").show();
} }
const updateDx = () => {
const length = parseFloat($("#node-input-length").val()) || 0;
const resolution = parseFloat($("#node-input-resolution_L").val()) || 1;
const dx = resolution > 0 ? (length / resolution).toFixed(6) : "N/A";
$("#dx-output").text(dx + " m");
};
// Set up event listeners for real-time updates
$("#node-input-length, #node-input-resolution_L").on("change keyup", updateDx);
// Initial calculation
updateDx();
}, },
oneditsave: function() { oneditsave: function() {
// save logger fields // save logger fields
@@ -140,10 +153,19 @@
<label for="node-input-length"><i class="fa fa-tag"></i> Reactor length [m]</label> <label for="node-input-length"><i class="fa fa-tag"></i> Reactor length [m]</label>
<input type="text" id="node-input-length" placeholder="m"> <input type="text" id="node-input-length" placeholder="m">
</div> </div>
<h2> Simulation parameters </h2>
<div class="form-row">
<label for="node-input-timeStep"><i class="fa fa-tag"></i> Time step [s]</label>
<input type="text" id="node-input-timeStep" placeholder="s">
</div>
<div class="form-row PFR"> <div class="form-row PFR">
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label> <label for="node-input-resolution_L"><i class="fa fa-tag"></i> Spatial resolution</label>
<input type="text" id="node-input-resolution_L" placeholder="#"> <input type="text" id="node-input-resolution_L" placeholder="#">
</div> </div>
<div class="form-row PFR">
<label for="node-input-dx"><i class="fa fa-tag"></i> Δx (length / resolution) [m]</label>
<span id="dx-output" style="display: inline-block; padding: 8px; font-weight: bold;">--</span>
</div>
<h3> Internal mass transfer calculation (optional) </h3> <h3> Internal mass transfer calculation (optional) </h3>
<div class="form-row"> <div class="form-row">
<label for="node-input-kla"><i class="fa fa-tag"></i> kLa [d-1]</label> <label for="node-input-kla"><i class="fa fa-tag"></i> kLa [d-1]</label>
@@ -203,11 +225,6 @@
<label for="node-input-X_TS_init"><i class="fa fa-tag"></i> Initial total suspended solids [g TSS m-3]</label> <label for="node-input-X_TS_init"><i class="fa fa-tag"></i> Initial total suspended solids [g TSS m-3]</label>
<input type="text" id="node-input-X_TS_init" class="concentrations"> <input type="text" id="node-input-X_TS_init" class="concentrations">
</div> </div>
<h2> Simulation parameters </h2>
<div class="form-row">
<label for="node-input-timeStep"><i class="fa fa-tag"></i> Time step [s]</label>
<input type="text" id="node-input-timeStep" placeholder="s">
</div>
<!-- Logger fields injected here --> <!-- Logger fields injected here -->
<div id="logger-fields-placeholder"></div> <div id="logger-fields-placeholder"></div>

View File

@@ -34,7 +34,6 @@ class nodeClass {
switch (msg.topic) { switch (msg.topic) {
case "clock": case "clock":
this.source.updateState(msg.timestamp); this.source.updateState(msg.timestamp);
send([msg, null, null]);
break; break;
case "Fluent": case "Fluent":
this.source.setInfluent = msg; this.source.setInfluent = msg;
@@ -42,9 +41,6 @@ class nodeClass {
case "OTR": case "OTR":
this.source.setOTR = msg; this.source.setOTR = msg;
break; break;
case "Temperature":
this.source.setTemperature = msg;
break;
case "Dispersion": case "Dispersion":
this.source.setDispersion = msg; this.source.setDispersion = msg;
break; break;

View File

@@ -2,9 +2,67 @@ const math = require('mathjs');
const ASM_CONSTANTS = { const ASM_CONSTANTS = {
S_O_INDEX: 0, S_O_INDEX: 0,
S_NH_INDEX: 3,
S_NO_INDEX: 5,
NUM_SPECIES: 13 NUM_SPECIES: 13
}; };
const KINETIC_CONSTANTS = {
// Hydrolysis
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.5, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 10., // saturation constant S_s [g COD m-3]
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 3., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.3, // aerobic respiration rate [d-1]
b_H_NO: 0.15, // anoxic respiration rate [d-1]
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.3, // maximum specific growth rate [d-1]
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.20, // aerobic respiration rate [d-1]
b_A_NO: 0.10 // anoxic respiration rate [d-1]
};
const STOICHIOMETRIC_CONSTANTS = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/** /**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters. * ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
*/ */
@@ -15,65 +73,13 @@ class ASM3 {
* Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters. * Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
* @property {Object} kin_params - Kinetic parameters * @property {Object} kin_params - Kinetic parameters
*/ */
this.kin_params = { this.kin_params = KINETIC_CONSTANTS;
// Hydrolysis
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.5, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 10., // saturation constant S_s [g COD m-3]
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 3., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.3, // aerobic respiration rate [d-1]
b_H_NO: 0.15, // anoxic respiration rate [d-1]
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.3, // maximum specific growth rate [d-1]
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.20, // aerobic respiration rate [d-1]
b_A_NO: 0.10 // anoxic respiration rate [d-1]
};
/** /**
* Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters. * Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
* @property {Object} stoi_params - Stoichiometric parameters * @property {Object} stoi_params - Stoichiometric parameters
*/ */
this.stoi_params = { this.stoi_params = STOICHIOMETRIC_CONSTANTS;
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/** /**
* Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters. * Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters.
@@ -213,4 +219,4 @@ class ASM3 {
} }
} }
module.exports = { ASM3, ASM_CONSTANTS }; module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };

View File

@@ -2,9 +2,67 @@ const math = require('mathjs');
const ASM_CONSTANTS = { const ASM_CONSTANTS = {
S_O_INDEX: 0, S_O_INDEX: 0,
S_NH_INDEX: 3,
S_NO_INDEX: 5,
NUM_SPECIES: 13 NUM_SPECIES: 13
}; };
const KINETIC_CONSTANTS = {
// Hydrolysis
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.6, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 2., // saturation constant S_s [g COD m-3]
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 2., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.2, // aerobic respiration rate [d-1]
b_H_NO: 0.1, // anoxic respiration rate [d-1]
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.0, // maximum specific growth rate [d-1]
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.15, // aerobic respiration rate [d-1]
b_A_NO: 0.05 // anoxic respiration rate [d-1]
};
const STOICHIOMETRIC_CONSTANTS = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/** /**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). * ASM3 class for the Activated Sludge Model No. 3 (ASM3).
*/ */
@@ -15,65 +73,13 @@ class ASM3 {
* Kinetic parameters for ASM3 at 20 C. * Kinetic parameters for ASM3 at 20 C.
* @property {Object} kin_params - Kinetic parameters * @property {Object} kin_params - Kinetic parameters
*/ */
this.kin_params = { this.kin_params = KINETIC_CONSTANTS;
// Hydrolysis
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.6, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 2., // saturation constant S_s [g COD m-3]
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 2., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.2, // aerobic respiration rate [d-1]
b_H_NO: 0.1, // anoxic respiration rate [d-1]
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.0, // maximum specific growth rate [d-1]
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.15, // aerobic respiration rate [d-1]
b_A_NO: 0.05 // anoxic respiration rate [d-1]
};
/** /**
* Stoichiometric and composition parameters for ASM3. * Stoichiometric and composition parameters for ASM3.
* @property {Object} stoi_params - Stoichiometric parameters * @property {Object} stoi_params - Stoichiometric parameters
*/ */
this.stoi_params = { this.stoi_params = STOICHIOMETRIC_CONSTANTS;
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/** /**
* Temperature theta parameters for ASM3. * Temperature theta parameters for ASM3.
@@ -213,4 +219,4 @@ class ASM3 {
} }
} }
module.exports = { ASM3, ASM_CONSTANTS }; module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };

View File

@@ -10,9 +10,9 @@ const mathConfig = {
const math = create(all, mathConfig); const math = create(all, mathConfig);
const BC_PADDING = 2; const BC_PADDING = 2; // Boundary Condition padding for open boundaries in extendedState variable
const DEBUG = false; const DEBUG = false;
const DAY2MS = 1000 * 60 * 60 * 24; const DAY2MS = 1000 * 60 * 60 * 24; // convert between days and milliseconds
class Reactor { class Reactor {
/** /**
@@ -25,13 +25,14 @@ class Reactor {
this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name); this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name);
this.emitter = new EventEmitter(); this.emitter = new EventEmitter();
this.measurements = new MeasurementContainer(); this.measurements = new MeasurementContainer();
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility this.childRegistrationUtils = new childRegistrationUtils(this); // child registration utility
// placeholder variables for children and parents
this.upstreamReactor = null; this.upstreamReactor = null;
this.downstreamReactor = null; this.downstreamReactor = null;
this.returnPump = null; this.returnPump = null;
this.asm = new ASM3(); this.asm = new ASM3(); // Reaction model
this.volume = config.volume; // fluid volume reactor [m3] this.volume = config.volume; // fluid volume reactor [m3]
@@ -42,9 +43,9 @@ class Reactor {
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1] this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
this.currentTime = Date.now(); // milliseconds since epoch [ms] this.currentTime = null; // milliseconds since epoch [ms]
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step in seconds, converted to days. this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step in seconds, converted to days.
this.speedUpFactor = 100; // speed up factor for simulation, 60 means 1 minute per simulated second this.speedUpFactor = 1; // speed up factor for simulation, 60 means 1 minute per simulated second
} }
/** /**
@@ -113,6 +114,11 @@ class Reactor {
} }
} }
/**
* Register child function required for child registration.
* @param {object} child
* @param {string} softwareType
*/
registerChild(child, softwareType) { registerChild(child, softwareType) {
if(!child) { if(!child) {
this.logger.error(`Invalid ${softwareType} child provided.`); this.logger.error(`Invalid ${softwareType} child provided.`);
@@ -161,18 +167,14 @@ class Reactor {
_connectReactor(reactorChild) { _connectReactor(reactorChild) {
if (reactorChild.config.functionality.positionVsParent != "upstream") { if (reactorChild.config.functionality.positionVsParent != "upstream") {
this.logger.warn("Reactor children of reactors should always be upstream."); this.logger.warn("Reactor children of other reactors should always be upstream!");
}
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
} }
// set upstream and downstream reactor variable in current and child nodes respectively for easy access // set upstream and downstream reactor variable in current and child nodes respectively for easy access
this.upstreamReactor = reactorChild; this.upstreamReactor = reactorChild;
reactorChild.downstreamReactor = this; reactorChild.downstreamReactor = this;
reactorChild.emitter.on("stateChange", (eventData) => { reactorChild.emitter.on("stateChange", (eventData) => { // Triggers state update in downstream reactor.
this.logger.debug(`State change of upstream reactor detected.`); this.logger.debug(`State change of upstream reactor detected.`);
this.updateState(eventData); this.updateState(eventData);
}); });
@@ -203,20 +205,32 @@ class Reactor {
* Update the reactor state based on the new time. * Update the reactor state based on the new time.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch. * @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/ */
updateState(newTime = Date.now()) { // expect update with timestamp updateState(newTime) {
if (this.upstreamReactor) { if (!this.currentTime) { // initialise currentTime variable
this.setInfluent = this.upstreamReactor.getEffluent[0]; // grab main effluent upstream reactor this.currentTime = newTime;
return;
}
if (this.upstreamReactor) { // grab main effluent upstream reactor
this.setInfluent = this.upstreamReactor.getEffluent[0];
} }
const n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*DAY2MS)); const n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*DAY2MS));
if (n_iter) {
let n = 0; if (n_iter == 0) { // no update required, change in currentTime smaller than time step
while (n < n_iter) { return;
this.tick(this.timeStep); }
n += 1;
} let n = 0;
this.currentTime += n_iter * this.timeStep * DAY2MS / this.speedUpFactor; while (n < n_iter) {
this.emitter.emit("stateChange", this.currentTime); this.tick(this.timeStep);
n += 1;
}
this.currentTime += n_iter * this.timeStep * DAY2MS / this.speedUpFactor;
this.emitter.emit("stateChange", this.currentTime); // update downstream reactors
if (this.returnPump) { // update recirculation pump state
this.returnPump.updateSourceSink();
} }
} }
} }
@@ -231,6 +245,23 @@ class Reactor_CSTR extends Reactor {
this.state = config.initialState; this.state = config.initialState;
} }
_updateMeasurement(measurementType, value, position, context) {
switch(measurementType) {
case "quantity (oxygen)":
this.state[ASM_CONSTANTS.S_O_INDEX] = value;
break;
case "quantity (ammonium)":
this.state[ASM_CONSTANTS.S_NH_INDEX] = value;
break;
case "quantity (nox)":
this.state[ASM_CONSTANTS.S_NO_INDEX] = value;
break;
default:
super._updateMeasurement(measurementType, value, position, context);
}
}
/** /**
* Tick the reactor state using the forward Euler method. * Tick the reactor state using the forward Euler method.
* @param {number} time_step - Time step for the simulation [d]. * @param {number} time_step - Time step for the simulation [d].
@@ -241,7 +272,7 @@ class Reactor_CSTR extends Reactor {
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state); const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
const reaction = this.asm.compute_dC(this.state, this.temperature); const reaction = this.asm.compute_dC(this.state, this.temperature);
const transfer = Array(ASM_CONSTANTS.NUM_SPECIES).fill(0.0); const transfer = Array(ASM_CONSTANTS.NUM_SPECIES).fill(0.0);
transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[ASM_CONSTANTS.S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step) const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
@@ -290,13 +321,23 @@ class Reactor_PFR extends Reactor {
this.D = this._constrainDispersion(input.payload); this.D = this._constrainDispersion(input.payload);
} }
_connectReactor(reactorChild) {
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
}
super._connectReactor(reactorChild);
}
/**
* Update the reactor state based on the new time. Performs checks specific to PFR.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
updateState(newTime) { updateState(newTime) {
super.updateState(newTime); super.updateState(newTime);
// let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
this.D = this._constrainDispersion(this.D); this.D = this._constrainDispersion(this.D); // constrains D to minimum dispersion, so that local Péclet number is always above 2
const Co_D = this.D*this.timeStep/(this.d_x*this.d_x); const Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
// (Pe_local >= 2) && this.logger.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
(Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`); (Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
if(DEBUG) { if(DEBUG) {
@@ -326,8 +367,8 @@ class Reactor_PFR extends Reactor {
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2); transfer[i][ASM_CONSTANTS.S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
} }
} else { } else {
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) { for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this._calcOTR(this.extendedState[i][ASM_CONSTANTS.S_O_INDEX], this.temperature) * this.n_x/(this.n_x-2); transfer[i][ASM_CONSTANTS.S_O_INDEX] = this._calcOTR(this.extendedState[i][ASM_CONSTANTS.S_O_INDEX], this.temperature);
} }
} }
@@ -349,10 +390,19 @@ class Reactor_PFR extends Reactor {
} }
_updateMeasurement(measurementType, value, position, context) { _updateMeasurement(measurementType, value, position, context) {
const grid_pos = Math.round(context.distance / this.config.length * this.n_x);
// naive approach for reconciling measurements and simulation
// could benefit from Kalman filter?
switch(measurementType) { switch(measurementType) {
case "quantity (oxygen)": case "quantity (oxygen)":
const grid_pos = Math.round(context.distance / this.config.length * this.n_x); this.state[grid_pos][ASM_CONSTANTS.S_O_INDEX] = value;
this.state[grid_pos][0] = value; // naive approach for reconciling measurements and simulation break;
case "quantity (ammonium)":
this.state[grid_pos][ASM_CONSTANTS.S_NH_INDEX] = value;
break;
case "quantity (nox)":
this.state[grid_pos][ASM_CONSTANTS.S_NO_INDEX] = value;
break; break;
default: default:
super._updateMeasurement(measurementType, value, position, context); super._updateMeasurement(measurementType, value, position, context);
@@ -366,8 +416,8 @@ class Reactor_PFR extends Reactor {
*/ */
_applyBoundaryConditions() { _applyBoundaryConditions() {
// Upstream BC // Upstream BC
if (this.upstreamReactor) { if (this.upstreamReactor && this.upstreamReactor.config.reactor_type == "PFR") {
// Open boundary // Open boundary, if upstream reactor is PFR
this.extendedState.splice(0, BC_PADDING, ...this.upstreamReactor.state.slice(-BC_PADDING)); this.extendedState.splice(0, BC_PADDING, ...this.upstreamReactor.state.slice(-BC_PADDING));
} else { } else {
if (math.sum(this.Fs) > 0) { if (math.sum(this.Fs) > 0) {
@@ -375,6 +425,7 @@ class Reactor_PFR extends Reactor {
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0]; const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
const BC_dispersion_term = this.D*this.A/(math.sum(this.Fs)*this.d_x); const BC_dispersion_term = this.D*this.A/(math.sum(this.Fs)*this.d_x);
this.extendedState[BC_PADDING] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, this.extendedState[BC_PADDING+1]))); this.extendedState[BC_PADDING] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, this.extendedState[BC_PADDING+1])));
// Numerical boundary condition (first-order accurate)
this.extendedState[BC_PADDING-1] = math.add(math.multiply(2, this.extendedState[BC_PADDING]), math.multiply(-2, this.extendedState[BC_PADDING+2]), this.extendedState[BC_PADDING+3]); this.extendedState[BC_PADDING-1] = math.add(math.multiply(2, this.extendedState[BC_PADDING]), math.multiply(-2, this.extendedState[BC_PADDING+2]), this.extendedState[BC_PADDING+3]);
} else { } else {
// Neumann BC (no flux) // Neumann BC (no flux)
@@ -383,8 +434,8 @@ class Reactor_PFR extends Reactor {
} }
// Downstream BC // Downstream BC
if (this.downstreamReactor) { if (this.downstreamReactor && this.downstreamReactor.config.reactor_type == "PFR") {
// Open boundary // Open boundary, if downstream reactor is PFR
this.extendedState.splice(this.n_x+BC_PADDING, BC_PADDING, ...this.downstreamReactor.state.slice(0, BC_PADDING)); this.extendedState.splice(this.n_x+BC_PADDING, BC_PADDING, ...this.downstreamReactor.state.slice(0, BC_PADDING));
} else { } else {
// Neumann BC (no flux) // Neumann BC (no flux)
@@ -394,7 +445,6 @@ class Reactor_PFR extends Reactor {
/** /**
* Create finite difference first derivative operator. * Create finite difference first derivative operator.
* @returns {Array} - First derivative operator matrix.
*/ */
_makeDoperator() { // create gradient operator _makeDoperator() { // create gradient operator
const D_size = this.n_x+2*BC_PADDING; const D_size = this.n_x+2*BC_PADDING;
@@ -410,7 +460,6 @@ class Reactor_PFR extends Reactor {
/** /**
* Create central finite difference second derivative operator. * Create central finite difference second derivative operator.
* @returns {Array} - Second derivative operator matrix.
*/ */
_makeD2operator() { // create the central second derivative operator _makeD2operator() { // create the central second derivative operator
const D_size = this.n_x+2*BC_PADDING; const D_size = this.n_x+2*BC_PADDING;
@@ -423,6 +472,9 @@ class Reactor_PFR extends Reactor {
return D2; return D2;
} }
/**
* Constrains dispersion so that local Péclet number stays below 2. Needed for stable central differencing method.
*/
_constrainDispersion(D) { _constrainDispersion(D) {
const Dmin = math.sum(this.Fs) * this.d_x / (1.999 * this.A); const Dmin = math.sum(this.Fs) * this.d_x / (1.999 * this.A);
if (D < Dmin) { if (D < Dmin) {