32 Commits

Author SHA1 Message Date
7eecbddd19 Add example flow 2025-11-28 14:29:53 +01:00
d56e422d90 Shift fields around in node parameters 2025-11-28 11:52:40 +01:00
61f911af6b Update README.md 2025-11-28 10:51:10 +00:00
9c3a32c2cb Merge pull request 'Final bug fixes and documentation' (#6) from dev-Pieter into main
Reviewed-on: #6
2025-11-21 13:48:18 +00:00
033a56a9e0 Enhance comments and documentation in Reactor classes for clarity and maintainability 2025-11-21 12:29:46 +01:00
dd70b8c890 Fix CSTR PFR distinctions 2025-11-21 11:02:40 +01:00
3d93f2a7b9 Fix minor bug 2025-11-14 14:48:39 +01:00
cc89833530 Update state handling in reactor class and optimize time iteration logic 2025-11-14 13:11:09 +01:00
f3bbf63602 Add return pump update in reactor state change 2025-11-14 12:55:34 +01:00
70af0885e3 Prepare for working with relative time 2025-11-14 12:34:52 +01:00
dbfc4a81b2 Remove unused / depreciated input handling 2025-11-14 12:33:16 +01:00
f14e2c8d8e Reformat asm constants 2025-11-13 16:52:38 +01:00
7e34b9aa71 Add real-time calculation for dx based on length and resolution inputs 2025-11-13 13:59:56 +01:00
ff814074a4 Merge pull request 'Minor bug fixes, code perfomance and clarity improvements' (#5) from dev-Pieter into main
Reviewed-on: #5
2025-11-12 09:27:38 +00:00
2b37163a8a Minor fixes 2025-11-07 16:51:48 +01:00
a106276ca6 Add additional ASM constants, add other sensor handling, fix bug in kla model 2025-11-07 11:59:24 +01:00
ffb4080f14 Refactor boundary condition handling in Reactor_PFR class for improved clarity and efficiency 2025-11-06 17:24:10 +01:00
260d04b96f Minor optimisations in code and clarification 2025-11-06 16:36:51 +01:00
9f060d2dd0 Refactor, minor changes and remove depreciated functions 2025-11-06 16:09:18 +01:00
b0dd9b6a8f Refactor ASM3 module to export ASM_CONSTANTS and update references in Reactor classes 2025-11-06 15:47:18 +01:00
5c41dc44a3 Clean up unused code 2025-11-06 15:46:43 +01:00
4578667a96 Merge pull request 'Recirculation Integration' (#4) from recirculation-integration into main
Reviewed-on: #4
2025-11-06 13:55:42 +00:00
3828e43c12 Refactor reactor node configuration to remove n_inlets and simplify inlet handling 2025-11-06 14:51:06 +01:00
e6923f2916 Refactor child registration and connection methods to handle invalid inputs and improve readability 2025-10-31 11:54:28 +01:00
4680b98418 minor variable name changes 2025-10-23 17:16:10 +02:00
eb787ec47f Minor bug fix and change in report level when encountering invalid children 2025-10-22 14:40:56 +02:00
HorriblePerson555
6de4f9ec3e Fix recirculation flow calculation to prevent negative flow rates and improve variable naming 2025-10-21 13:02:41 +02:00
HorriblePerson555
7b38c2f51a Refactor recirculation flow calculation to ensure non-negative flow rates and correct measurement position 2025-10-21 12:32:21 +02:00
HorriblePerson555
018215934e Fix recirculation flow measurement to use getCurrentValue and handle undefined values 2025-10-20 17:37:29 +02:00
HorriblePerson555
3a820df7f2 Non-functioning prototype with partial rotating machine integration 2025-10-20 16:45:53 +02:00
HorriblePerson555
670c4deacb Merge branch 'boundary-conditions' 2025-10-16 15:36:37 +02:00
442ddc60ed Fix syntax error 2025-10-01 11:50:35 +02:00
14 changed files with 1166 additions and 2362 deletions

View File

@@ -1,17 +1,20 @@
# reactor
# Reactor: Advanced Hydraulic Tank & Biological Process Simulator
Reactor: Advanced Hydraulic Tank & Biological Process Simulator
A comprehensive reactor class for wastewater treatment simulation featuring non-ideal plug flow hydraulics and ASM3 biological modeling.
A comprehensive reactor class for wastewater treatment simulation featuring plug flow hydraulics, ASM1-ASM3 biological modeling, and multi-sectional concentration tracking. Implements hydraulic retention time calculations, dispersion modeling, and real-time biological reaction kinetics for accurate process simulation.
## How to use this Node
### Set Node Properties
- Set reactor type: Continuously Stirred Tank Reactor (CSTR) or Plug Flow Reactor (PFR)
- Configure reactor sizing: Set reactor volume [ $m^3$ ] and (for PFRs) set the reactor length [ $m$ ]
- (For PFRs) set reactor spatial resolution: A value of 10 or 20 is good. A higher resolution means more accurate simulation, at higher computational expense. Note that connected reactors must have similar Δx values.
- Set initial state of reactor: set the intial concentrations of all relevant reaction species.
- (Optional) set $k_L a$ to calculate OTR internally, rather than providing it explicitly, using simple mass transfer model.
Key Features:
Plug Flow Hydraulics: Multi-section reactor with configurable sectioning factor and dispersion modeling
ASM1 Integration: Complete biological nutrient removal modeling with 13 state variables (COD, nitrogen, phosphorus)
Dynamic Volume Control: Automatic section management with overflow handling and retention time calculations
Oxygen Transfer: Saturation-limited O2 transfer with Fick's law slowdown effects and solubility curves
Real-time Kinetics: Continuous biological reaction rate calculations with configurable time acceleration
Weighted Averaging: Volume-based concentration mixing for accurate mass balance calculations
Child Registration: Integration with diffuser systems and upstream/downstream reactor networks
Supports complex biological treatment train modeling with temperature compensation, sludge calculations, and comprehensive process monitoring for wastewater treatment plant optimization and regulatory compliance.
### Accepted Node inputs
- \{ topic: clock, payload: \<timestamp [ $ms$ ]\> \} - **required** clock signal to make reactor update state.
- \{ topic: Fluent, payload: \{ F: \<flow rate [ $m^3 d^{-1}$ ]\>, C: \<array with concentrations\> \} \} - sets inflow composition and flow rate.
- \{ topic: Dispersion, payload: \<dispersion coefficient in [ $m d^{-2}$ ]\> \} - sets PFR dispersion coefficient.
- \{ topic: OTR, payload: \<oxygen transfer rate [ $ g d^{-1} m^{-3}$ ]\> \} - sets current oxygen transfer rate.
## Troubleshooting
Check for possible numerical warnings. These tell you which simulation parameters to change. If solutions appear to be oscillate, try reducing the time step. If solutions appear to be too dispersive, try increasing the reactor resolution.

View File

@@ -1,57 +0,0 @@
<script type="text/javascript">
RED.nodes.registerType("recirculation-pump", {
category: "WWTP",
color: "#e4a363",
defaults: {
name: { value: "" },
F2: { value: 0, required: true },
inlet: { value: 1, required: true }
},
inputs: 1,
outputs: 2,
outputLabels: ["Main effluent", "Recirculation effluent"],
icon: "font-awesome/fa-random",
label: function() {
return this.name || "Recirculation pump";
},
oneditprepare: function() {
$("#node-input-F2").typedInput({
type:"num",
types:["num"]
});
$("#node-input-inlet").typedInput({
type:"num",
types:["num"]
});
},
oneditsave: function() {
let debit = parseFloat($("#node-input-F2").typedInput("value"));
if (isNaN(debit) || debit < 0) {
RED.notify("Debit is not set correctly", {type: "error"});
}
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
if (inlet < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
<script type="text/html" data-template-name="recirculation-pump">
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
<div class="form-row">
<label for="node-input-F2"><i class="fa fa-tag"></i> Recirculation debit [m3 d-1]</label>
<input type="text" id="node-input-F2" placeholder="m3 s-1">
</div>
<div class="form-row">
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet recirculation</label>
<input type="text" id="node-input-inlet" placeholder="#">
</div>
</script>
<script type="text/html" data-help-name="recirculation-pump">
<p>Recirculation-pump for splitting streams</p>
</script>

View File

@@ -1,40 +0,0 @@
module.exports = function(RED) {
function recirculation(config) {
RED.nodes.createNode(this, config);
var node = this;
let name = config.name;
let F2 = parseFloat(config.F2);
const inlet_F2 = parseInt(config.inlet);
node.on('input', function(msg, send, done) {
switch (msg.topic) {
case "Fluent":
// conserve volume flow debit
let F_in = msg.payload.F;
let F1 = Math.max(F_in - F2, 0);
let F2_corr = F_in < F2 ? F_in : F2;
let msg_F1 = structuredClone(msg);
msg_F1.payload.F = F1;
let msg_F2 = {...msg};
msg_F2.payload.F = F2_corr;
msg_F2.payload.inlet = inlet_F2;
send([msg_F1, msg_F2]);
break;
case "clock":
break;
default:
console.log("Unknown topic: " + msg.topic);
}
if (done) {
done();
}
});
}
RED.nodes.registerType("recirculation-pump", recirculation);
};

View File

@@ -1,57 +0,0 @@
<script type="text/javascript">
RED.nodes.registerType("settling-basin", {
category: "WWTP",
color: "#e4a363",
defaults: {
name: { value: "" },
TS_set: { value: 0.1, required: true },
inlet: { value: 1, required: true }
},
inputs: 1,
outputs: 2,
outputLabels: ["Main effluent", "Sludge effluent"],
icon: "font-awesome/fa-random",
label: function() {
return this.name || "Settling basin";
},
oneditprepare: function() {
$("#node-input-TS_set").typedInput({
type:"num",
types:["num"]
});
$("#node-input-inlet").typedInput({
type:"num",
types:["num"]
});
},
oneditsave: function() {
let TS_set = parseFloat($("#node-input-TS_set").typedInput("value"));
if (isNaN(TS_set) || TS_set < 0) {
RED.notify("TS is not set correctly", {type: "error"});
}
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
if (inlet < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
<script type="text/html" data-template-name="settling-basin">
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
<div class="form-row">
<label for="node-input-TS_set"><i class="fa fa-tag"></i> Total Solids set point [g m-3]</label>
<input type="text" id="node-input-TS_set" placeholder="">
</div>
<div class="form-row">
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet return line</label>
<input type="text" id="node-input-inlet" placeholder="#">
</div>
</script>
<script type="text/html" data-help-name="settling-basin">
<p>Settling tank</p>
</script>

View File

@@ -1,57 +0,0 @@
module.exports = function(RED) {
function settler(config) {
RED.nodes.createNode(this, config);
var node = this;
let name = config.name;
let TS_set = parseFloat(config.TS_set);
const inlet_sludge = parseInt(config.inlet);
node.on('input', function(msg, send, done) {
switch (msg.topic) {
case "Fluent":
// conserve volume flow debit
let F_in = msg.payload.F;
let C_in = msg.payload.C;
let F2 = (F_in * C_in[12]) / TS_set;
let F1 = Math.max(F_in - F2, 0);
let F2_corr = F_in < F2 ? F_in : F2;
let msg_F1 = structuredClone(msg);
msg_F1.payload.F = F1;
msg_F1.payload.C[7] = 0;
msg_F1.payload.C[8] = 0;
msg_F1.payload.C[9] = 0;
msg_F1.payload.C[10] = 0;
msg_F1.payload.C[11] = 0;
msg_F1.payload.C[12] = 0;
let msg_F2 = {...msg};
msg_F2.payload.F = F2_corr;
if (F2_corr > 0) {
msg_F2.payload.C[7] = F_in * C_in[7] / F2;
msg_F2.payload.C[8] = F_in * C_in[8] / F2;
msg_F2.payload.C[9] = F_in * C_in[9] / F2;
msg_F2.payload.C[10] = F_in * C_in[10] / F2;
msg_F2.payload.C[11] = F_in * C_in[11] / F2;
msg_F2.payload.C[12] = F_in * C_in[12] / F2;
}
msg_F2.payload.inlet = inlet_sludge;
send([msg_F1, msg_F2]);
break;
case "clock":
break;
default:
console.log("Unknown topic: " + msg.topic);
}
if (done) {
done();
}
});
}
RED.nodes.registerType("settling-basin", settler);
};

View File

@@ -0,0 +1,838 @@
[
{
"id": "a6b85e226d144df1",
"type": "tab",
"label": "Flow 3",
"disabled": false,
"info": "",
"env": []
},
{
"id": "a94c85d65c71b66a",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "Influx composition 1",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
},
{
"p": "timestamp",
"v": "",
"vt": "date"
}
],
"repeat": "864",
"crontab": "",
"once": true,
"onceDelay": "5",
"topic": "Fluent",
"payload": "{\"inlet\":0,\"F\":6600,\"C\":[0,30,100,16,0,0,5,25,75,30,0,0,125]}",
"payloadType": "json",
"x": 260,
"y": 240,
"wires": [
[
"b726c5be41c24dcb"
]
]
},
{
"id": "0ebfbbf57bba79f1",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "timestamp",
"v": "",
"vt": "date"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "1",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "clock",
"x": 300,
"y": 280,
"wires": [
[
"b726c5be41c24dcb"
]
]
},
{
"id": "cd0e4a78d1a59a6e",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "Dispersion",
"payload": "100",
"payloadType": "num",
"x": 260,
"y": 320,
"wires": [
[
"b726c5be41c24dcb",
"b0819ff9a4010227"
]
]
},
{
"id": "b726c5be41c24dcb",
"type": "reactor",
"z": "a6b85e226d144df1",
"name": "Anoxic 1",
"reactor_type": "PFR",
"volume": "730",
"length": "10",
"resolution_L": "20",
"kla": "",
"S_O_init": 0,
"S_I_init": 30,
"S_S_init": 100,
"S_NH_init": 16,
"S_N2_init": 0,
"S_NO_init": 0,
"S_HCO_init": 5,
"X_I_init": 25,
"X_S_init": 75,
"X_H_init": 30,
"X_STO_init": 0,
"X_A_init": "30",
"X_TS_init": "132",
"timeStep": "2",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "upstream",
"x": 540,
"y": 240,
"wires": [
[
"057ab2dcd4739aef"
],
[],
[
"b0819ff9a4010227",
"214aff7330e81d3f",
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "b0819ff9a4010227",
"type": "reactor",
"z": "a6b85e226d144df1",
"name": "Aerobic 1",
"reactor_type": "PFR",
"volume": "1460",
"length": "20",
"resolution_L": "40",
"kla": "2400",
"S_O_init": 0,
"S_I_init": 30,
"S_S_init": 100,
"S_NH_init": 16,
"S_N2_init": 0,
"S_NO_init": 0,
"S_HCO_init": 5,
"X_I_init": 25,
"X_S_init": 75,
"X_H_init": "500",
"X_STO_init": 0,
"X_A_init": "30",
"X_TS_init": "132",
"timeStep": "2",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "upstream",
"x": 940,
"y": 240,
"wires": [
[
"e0049d66fefeb3e6"
],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "214aff7330e81d3f",
"type": "rotatingMachine",
"z": "a6b85e226d144df1",
"speed": 1,
"startup": 0,
"warmup": 0,
"shutdown": 0,
"cooldown": 0,
"machineCurve": {},
"flowNumber": "1",
"uuid": "",
"supplier": "Hidrostal",
"category": "Pumps",
"assetType": "Centrifugal",
"model": "hidrostal-H05K-S03R",
"unit": "l/s",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "downstream",
"positionIcon": "→",
"hasDistance": false,
"distance": "",
"x": 740,
"y": 340,
"wires": [
[],
[],
[
"b0819ff9a4010227"
]
]
},
{
"id": "0be74d5c77febec1",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 900,
"o_max": 1200,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Flow",
"model": "VegaFlow 10",
"unit": "m³/h",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 600,
"y": 460,
"wires": [
[],
[],
[
"214aff7330e81d3f"
]
]
},
{
"id": "668f41a05698f21b",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "execSequence",
"payload": "{\"source\":\"parent\",\"action\":\"execSequence\",\"parameter\":\"startup\"}",
"payloadType": "json",
"x": 330,
"y": 400,
"wires": [
[
"214aff7330e81d3f",
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "47120bc82aa7bf49",
"type": "settler",
"z": "a6b85e226d144df1",
"name": "",
"model": "mb-model",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "atEquipment",
"x": 1100,
"y": 400,
"wires": [
[
"b1af49d1d0eb6783",
"6baffb7954cf0cce"
],
[],
[]
]
},
{
"id": "2ec38c4ae9aa6e7e",
"type": "rotatingMachine",
"z": "a6b85e226d144df1",
"speed": 1,
"startup": 0,
"warmup": 0,
"shutdown": 0,
"cooldown": 0,
"machineCurve": {},
"flowNumber": "2",
"uuid": "",
"supplier": "Hidrostal",
"category": "Pumps",
"assetType": "Centrifugal",
"model": "hidrostal-H05K-S03R",
"unit": "l/s",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "downstream",
"positionIcon": "→",
"hasDistance": false,
"distance": "",
"x": 860,
"y": 460,
"wires": [
[],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "21eff612371519c5",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 500,
"o_max": 660,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Flow",
"model": "VegaFlow 10",
"unit": "m³/h",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 720,
"y": 580,
"wires": [
[],
[],
[
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "057ab2dcd4739aef",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\") {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO},\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 720,
"y": 180,
"wires": [
[
"02a932317c76721e"
]
]
},
{
"id": "02a932317c76721e",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "ae38454098a37db0",
"name": "Anoxic reactor",
"label": "Anoxic reactor",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 920,
"y": 180,
"wires": [
[]
]
},
{
"id": "e0049d66fefeb3e6",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\") {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO},\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1140,
"y": 220,
"wires": [
[
"70eeb4c8caa2db77"
]
]
},
{
"id": "70eeb4c8caa2db77",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "ae38454098a37db0",
"name": "Aerobic reactor",
"label": "Aerobic reactor / recirculation",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1340,
"y": 220,
"wires": [
[]
]
},
{
"id": "b1af49d1d0eb6783",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\" || msg.payload.inlet == 0) {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1320,
"y": 380,
"wires": [
[
"0a3ffa69046a4844"
]
]
},
{
"id": "0a3ffa69046a4844",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "de8b029d69f26c0e",
"name": "Sludge composition",
"label": "Sludge composition",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1530,
"y": 380,
"wires": [
[]
]
},
{
"id": "272b4b0050479d13",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 3200,
"o_max": 4000,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Quantity (TSS)",
"model": "VegaSolidsProbe",
"unit": "g/m³",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 930,
"y": 580,
"wires": [
[],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "6baffb7954cf0cce",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\" || msg.payload.inlet == 1 || msg.payload.inlet == 2) {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1320,
"y": 420,
"wires": [
[
"df288814a2a9a2b1"
]
]
},
{
"id": "df288814a2a9a2b1",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "de8b029d69f26c0e",
"name": "Effluent",
"label": "Effluent",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1520,
"y": 420,
"wires": [
[]
]
},
{
"id": "ae38454098a37db0",
"type": "ui-group",
"name": "Group 3",
"page": "ca564642bfc5606c",
"width": 6,
"height": 1,
"order": -1,
"showTitle": true,
"className": "",
"visible": "true",
"disabled": "false",
"groupType": "default"
},
{
"id": "de8b029d69f26c0e",
"type": "ui-group",
"name": "Group 4",
"page": "ca564642bfc5606c",
"width": 6,
"height": 1,
"order": -1,
"showTitle": true,
"className": "",
"visible": "true",
"disabled": "false",
"groupType": "default"
},
{
"id": "ca564642bfc5606c",
"type": "ui-page",
"name": "PFR",
"ui": "90eb5f47d95b4087",
"path": "/page2",
"icon": "home",
"layout": "grid",
"theme": "2c8bcaa0046b4323",
"breakpoints": [
{
"name": "Default",
"px": "0",
"cols": "3"
},
{
"name": "Tablet",
"px": "576",
"cols": "6"
},
{
"name": "Small Desktop",
"px": "768",
"cols": "9"
},
{
"name": "Desktop",
"px": "1024",
"cols": "12"
}
],
"order": -1,
"className": "",
"visible": "true",
"disabled": "false"
},
{
"id": "90eb5f47d95b4087",
"type": "ui-base",
"name": "Dashboard",
"path": "/dashboard",
"appIcon": "",
"includeClientData": true,
"acceptsClientConfig": [
"ui-notification",
"ui-control"
],
"showPathInSidebar": false,
"headerContent": "page",
"navigationStyle": "default",
"titleBarStyle": "default",
"showReconnectNotification": true,
"notificationDisplayTime": 1,
"showDisconnectNotification": true,
"allowInstall": true
},
{
"id": "2c8bcaa0046b4323",
"type": "ui-theme",
"name": "Default",
"colors": {
"surface": "#ffffff",
"primary": "#0094ce",
"bgPage": "#eeeeee",
"groupBg": "#ffffff",
"groupOutline": "#cccccc"
},
"sizes": {
"density": "default",
"pagePadding": "12px",
"groupGap": "12px",
"groupBorderRadius": "4px",
"widgetGap": "12px"
}
}
]

File diff suppressed because it is too large Load Diff

119
package-lock.json generated
View File

@@ -1,119 +0,0 @@
{
"name": "reactor",
"version": "0.0.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "reactor",
"version": "0.0.1",
"license": "SEE LICENSE",
"dependencies": {
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/RnD/generalFunctions.git",
"mathjs": "^14.5.2"
}
},
"node_modules/@babel/runtime": {
"version": "7.28.4",
"resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.28.4.tgz",
"integrity": "sha512-Q/N6JNWvIvPnLDvjlE1OUBLPQHH6l3CltCEsHIujp45zQUSSh8K+gHnaEX45yAT1nyngnINhvWtzN+Nb9D8RAQ==",
"license": "MIT",
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/complex.js": {
"version": "2.4.2",
"resolved": "https://registry.npmjs.org/complex.js/-/complex.js-2.4.2.tgz",
"integrity": "sha512-qtx7HRhPGSCBtGiST4/WGHuW+zeaND/6Ld+db6PbrulIB1i2Ev/2UPiqcmpQNPSyfBKraC0EOvOKCB5dGZKt3g==",
"license": "MIT",
"engines": {
"node": "*"
},
"funding": {
"type": "github",
"url": "https://github.com/sponsors/rawify"
}
},
"node_modules/decimal.js": {
"version": "10.6.0",
"resolved": "https://registry.npmjs.org/decimal.js/-/decimal.js-10.6.0.tgz",
"integrity": "sha512-YpgQiITW3JXGntzdUmyUR1V812Hn8T1YVXhCu+wO3OpS4eU9l4YdD3qjyiKdV6mvV29zapkMeD390UVEf2lkUg==",
"license": "MIT"
},
"node_modules/escape-latex": {
"version": "1.2.0",
"resolved": "https://registry.npmjs.org/escape-latex/-/escape-latex-1.2.0.tgz",
"integrity": "sha512-nV5aVWW1K0wEiUIEdZ4erkGGH8mDxGyxSeqPzRNtWP7ataw+/olFObw7hujFWlVjNsaDFw5VZ5NzVSIqRgfTiw==",
"license": "MIT"
},
"node_modules/fraction.js": {
"version": "5.3.4",
"resolved": "https://registry.npmjs.org/fraction.js/-/fraction.js-5.3.4.tgz",
"integrity": "sha512-1X1NTtiJphryn/uLQz3whtY6jK3fTqoE3ohKs0tT+Ujr1W59oopxmoEh7Lu5p6vBaPbgoM0bzveAW4Qi5RyWDQ==",
"license": "MIT",
"engines": {
"node": "*"
},
"funding": {
"type": "github",
"url": "https://github.com/sponsors/rawify"
}
},
"node_modules/generalFunctions": {
"version": "1.0.0",
"resolved": "git+https://gitea.centraal.wbd-rd.nl/RnD/generalFunctions.git#efc97d6cd17399391b011298e47e8c1b1599592d",
"license": "SEE LICENSE"
},
"node_modules/javascript-natural-sort": {
"version": "0.7.1",
"resolved": "https://registry.npmjs.org/javascript-natural-sort/-/javascript-natural-sort-0.7.1.tgz",
"integrity": "sha512-nO6jcEfZWQXDhOiBtG2KvKyEptz7RVbpGP4vTD2hLBdmNQSsCiicO2Ioinv6UI4y9ukqnBpy+XZ9H6uLNgJTlw==",
"license": "MIT"
},
"node_modules/mathjs": {
"version": "14.8.0",
"resolved": "https://registry.npmjs.org/mathjs/-/mathjs-14.8.0.tgz",
"integrity": "sha512-DN4wmAjNzFVJ9vHqpAJ3vX0UF306u/1DgGKh7iVPuAFH19JDRd9NAaQS764MsKbSwDB6uBSkQEmgVmKdgYaCoQ==",
"license": "Apache-2.0",
"dependencies": {
"@babel/runtime": "^7.26.10",
"complex.js": "^2.2.5",
"decimal.js": "^10.4.3",
"escape-latex": "^1.2.0",
"fraction.js": "^5.2.1",
"javascript-natural-sort": "^0.7.1",
"seedrandom": "^3.0.5",
"tiny-emitter": "^2.1.0",
"typed-function": "^4.2.1"
},
"bin": {
"mathjs": "bin/cli.js"
},
"engines": {
"node": ">= 18"
}
},
"node_modules/seedrandom": {
"version": "3.0.5",
"resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-3.0.5.tgz",
"integrity": "sha512-8OwmbklUNzwezjGInmZ+2clQmExQPvomqjL7LFqOYqtmuxRgQYqOD3mHaU+MvZn5FLUeVxVfQjwLZW/n/JFuqg==",
"license": "MIT"
},
"node_modules/tiny-emitter": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/tiny-emitter/-/tiny-emitter-2.1.0.tgz",
"integrity": "sha512-NB6Dk1A9xgQPMoGqC5CVXn123gWyte215ONT5Pp5a0yt4nlEoO1ZWeCwpncaekPHXO60i47ihFnZPiRPjRMq4Q==",
"license": "MIT"
},
"node_modules/typed-function": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/typed-function/-/typed-function-4.2.1.tgz",
"integrity": "sha512-EGjWssW7Tsk4DGfE+5yluuljS1OGYWiI1J6e8puZz9nTMM51Oug8CD5Zo4gWMsOhq5BI+1bF+rWTm4Vbj3ivRA==",
"license": "MIT",
"engines": {
"node": ">= 18"
}
}
}
}

View File

@@ -11,6 +11,7 @@
"activated sludge",
"wastewater",
"biological model",
"EVOLV",
"node-red"
],
"license": "SEE LICENSE",
@@ -21,9 +22,7 @@
},
"node-red": {
"nodes": {
"reactor": "reactor.js",
"recirculation-pump": "additional_nodes/recirculation-pump.js",
"settling-basin": "additional_nodes/settling-basin.js"
"reactor": "reactor.js"
}
},
"dependencies": {

View File

@@ -2,7 +2,7 @@
<script type="text/javascript">
RED.nodes.registerType("reactor", {
category: "WWTP",
category: "EVOLV",
color: "#c4cce0",
defaults: {
name: { value: "" },
@@ -10,8 +10,6 @@
volume: { value: 0., required: true },
length: { value: 0.},
resolution_L: { value: 0.},
alpha: {value: 0},
n_inlets: { value: 1, required: true},
kla: { value: null },
S_O_init: { value: 0., required: true },
@@ -33,7 +31,7 @@
enableLog: { value: false },
logLevel: { value: "error" },
positionVsParent: { value: "" },
positionVsParent: { value: "" }
},
inputs: 1,
outputs: 3,
@@ -58,10 +56,6 @@
type:"num",
types:["num"]
});
$("#node-input-n_inlets").typedInput({
type:"num",
types:["num"]
});
$("#node-input-length").typedInput({
type:"num",
types:["num"]
@@ -97,10 +91,6 @@
$(".PFR").show();
}
});
$("#node-input-alpha").typedInput({
type:"num",
types:["num"]
})
$("#node-input-timeStep").typedInput({
type:"num",
types:["num"]
@@ -112,6 +102,19 @@
} else {
$(".PFR").show();
}
const updateDx = () => {
const length = parseFloat($("#node-input-length").val()) || 0;
const resolution = parseFloat($("#node-input-resolution_L").val()) || 1;
const dx = resolution > 0 ? (length / resolution).toFixed(6) : "N/A";
$("#dx-output").text(dx + " m");
};
// Set up event listeners for real-time updates
$("#node-input-length, #node-input-resolution_L").on("change keyup", updateDx);
// Initial calculation
updateDx();
},
oneditsave: function() {
// save logger fields
@@ -128,10 +131,6 @@
if (isNaN(volume) || volume <= 0) {
RED.notify("Fluid volume not set correctly", {type: "error"});
}
let n_inlets = parseInt($("#node-input-n_inlets").typedInput("value"));
if (isNaN(n_inlets) || n_inlets < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
@@ -154,20 +153,18 @@
<label for="node-input-length"><i class="fa fa-tag"></i> Reactor length [m]</label>
<input type="text" id="node-input-length" placeholder="m">
</div>
<h2> Simulation parameters </h2>
<div class="form-row">
<label for="node-input-timeStep"><i class="fa fa-tag"></i> Time step [s]</label>
<input type="text" id="node-input-timeStep" placeholder="s">
</div>
<div class="form-row PFR">
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label>
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Spatial resolution</label>
<input type="text" id="node-input-resolution_L" placeholder="#">
</div>
<div class="PFR">
<p> Inlet boundary condition parameter &alpha; (&alpha; = 0: Danckwerts BC / &alpha; = 1: Dirichlet BC) </p>
<div class="form-row">
<label for="node-input-alpha"><i class="fa fa-tag"></i>Adjustable parameter BC</label>
<input type="text" id="node-input-alpha">
</div>
</div>
<div class="form-row">
<label for="node-input-n_inlets"><i class="fa fa-tag"></i> Number of inlets</label>
<input type="text" id="node-input-n_inlets" placeholder="#">
<div class="form-row PFR">
<label for="node-input-dx"><i class="fa fa-tag"></i> Δx (length / resolution) [m]</label>
<span id="dx-output" style="display: inline-block; padding: 8px; font-weight: bold;">--</span>
</div>
<h3> Internal mass transfer calculation (optional) </h3>
<div class="form-row">
@@ -228,11 +225,6 @@
<label for="node-input-X_TS_init"><i class="fa fa-tag"></i> Initial total suspended solids [g TSS m-3]</label>
<input type="text" id="node-input-X_TS_init" class="concentrations">
</div>
<h2> Simulation parameters </h2>
<div class="form-row">
<label for="node-input-timeStep"><i class="fa fa-tag"></i> Time step [s]</label>
<input type="text" id="node-input-timeStep" placeholder="s">
</div>
<!-- Logger fields injected here -->
<div id="logger-fields-placeholder"></div>
@@ -240,7 +232,6 @@
<!-- Position fields will be injected here -->
<div id="position-fields-placeholder"></div>
</script>
<script type="text/html" data-help-name="reactor">

View File

@@ -34,7 +34,6 @@ class nodeClass {
switch (msg.topic) {
case "clock":
this.source.updateState(msg.timestamp);
send([msg, null, null]);
break;
case "Fluent":
this.source.setInfluent = msg;
@@ -42,9 +41,6 @@ class nodeClass {
case "OTR":
this.source.setOTR = msg;
break;
case "Temperature":
this.source.setTemperature = msg;
break;
case "Dispersion":
this.source.setDispersion = msg;
break;
@@ -87,8 +83,6 @@ class nodeClass {
volume: parseFloat(uiConfig.volume),
length: parseFloat(uiConfig.length),
resolution_L: parseInt(uiConfig.resolution_L),
alpha: parseFloat(uiConfig.alpha),
n_inlets: parseInt(uiConfig.n_inlets),
kla: parseFloat(uiConfig.kla),
initialState: [
parseFloat(uiConfig.S_O_init),

View File

@@ -1,4 +1,67 @@
const math = require('mathjs')
const math = require('mathjs');
const ASM_CONSTANTS = {
S_O_INDEX: 0,
S_NH_INDEX: 3,
S_NO_INDEX: 5,
NUM_SPECIES: 13
};
const KINETIC_CONSTANTS = {
// Hydrolysis
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.5, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 10., // saturation constant S_s [g COD m-3]
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 3., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.3, // aerobic respiration rate [d-1]
b_H_NO: 0.15, // anoxic respiration rate [d-1]
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.3, // maximum specific growth rate [d-1]
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.20, // aerobic respiration rate [d-1]
b_A_NO: 0.10 // anoxic respiration rate [d-1]
};
const STOICHIOMETRIC_CONSTANTS = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
@@ -10,65 +73,13 @@ class ASM3 {
* Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = {
// Hydrolysis
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.5, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 10., // saturation constant S_s [g COD m-3]
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 3., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.3, // aerobic respiration rate [d-1]
b_H_NO: 0.15, // anoxic respiration rate [d-1]
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.3, // maximum specific growth rate [d-1]
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.20, // aerobic respiration rate [d-1]
b_A_NO: 0.10 // anoxic respiration rate [d-1]
};
this.kin_params = KINETIC_CONSTANTS;
/**
* Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
this.stoi_params = STOICHIOMETRIC_CONSTANTS;
/**
* Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters.
@@ -208,4 +219,4 @@ class ASM3 {
}
}
module.exports = ASM3;
module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };

View File

@@ -1,4 +1,67 @@
const math = require('mathjs')
const math = require('mathjs');
const ASM_CONSTANTS = {
S_O_INDEX: 0,
S_NH_INDEX: 3,
S_NO_INDEX: 5,
NUM_SPECIES: 13
};
const KINETIC_CONSTANTS = {
// Hydrolysis
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.6, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 2., // saturation constant S_s [g COD m-3]
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 2., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.2, // aerobic respiration rate [d-1]
b_H_NO: 0.1, // anoxic respiration rate [d-1]
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.0, // maximum specific growth rate [d-1]
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.15, // aerobic respiration rate [d-1]
b_A_NO: 0.05 // anoxic respiration rate [d-1]
};
const STOICHIOMETRIC_CONSTANTS = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3).
@@ -10,65 +73,13 @@ class ASM3 {
* Kinetic parameters for ASM3 at 20 C.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = {
// Hydrolysis
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
// Heterotrophs
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
nu_NO: 0.6, // anoxic reduction factor [-]
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
K_S: 2., // saturation constant S_s [g COD m-3]
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
mu_H_max: 2., // maximum specific growth rate [d-1]
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
b_H_O: 0.2, // aerobic respiration rate [d-1]
b_H_NO: 0.1, // anoxic respiration rate [d-1]
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
// Autotrophs
mu_A_max: 1.0, // maximum specific growth rate [d-1]
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
b_A_O: 0.15, // aerobic respiration rate [d-1]
b_A_NO: 0.05 // anoxic respiration rate [d-1]
};
this.kin_params = KINETIC_CONSTANTS;
/**
* Stoichiometric and composition parameters for ASM3.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
// Yields
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
// Composition (COD via DoR)
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
// Composition (nitrogen)
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
// Composition (TSS)
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
// Composition (charge)
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
this.stoi_params = STOICHIOMETRIC_CONSTANTS;
/**
* Temperature theta parameters for ASM3.
@@ -208,4 +219,4 @@ class ASM3 {
}
}
module.exports = ASM3;
module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };

View File

@@ -1,4 +1,4 @@
const ASM3 = require('./reaction_modules/asm3_class.js');
const { ASM3, ASM_CONSTANTS } = require('./reaction_modules/asm3_class.js');
const { create, all, isArray } = require('mathjs');
const { assertNoNaN } = require('./utils.js');
const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions');
@@ -10,10 +10,9 @@ const mathConfig = {
const math = create(all, mathConfig);
const S_O_INDEX = 0;
const NUM_SPECIES = 13;
const BC_PADDING = 2;
const BC_PADDING = 2; // Boundary Condition padding for open boundaries in extendedState variable
const DEBUG = false;
const DAY2MS = 1000 * 60 * 60 * 24; // convert between days and milliseconds
class Reactor {
/**
@@ -26,27 +25,27 @@ class Reactor {
this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name);
this.emitter = new EventEmitter();
this.measurements = new MeasurementContainer();
this.upstreamReactor = null;
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
this.parent = []; // Gets assigned via child registration
this.childRegistrationUtils = new childRegistrationUtils(this); // child registration utility
// placeholder variables for children and parents
this.upstreamReactor = null;
this.downstreamReactor = null;
this.returnPump = null;
this.asm = new ASM3();
this.asm = new ASM3(); // Reaction model
this.volume = config.volume; // fluid volume reactor [m3]
this.Fs = Array(config.n_inlets).fill(0); // fluid debits per inlet [m3 d-1]
this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(NUM_SPECIES).fill(0)); // composition influents
this.Fs = [0]; // fluid debits per inlet [m3 d-1]
this.Cs_in = [Array(ASM_CONSTANTS.NUM_SPECIES).fill(0)]; // composition influents
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1 m-3]
this.temperature = 20; // temperature [C]
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
this.currentTime = Date.now(); // milliseconds since epoch [ms]
this.currentTime = null; // milliseconds since epoch [ms]
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step in seconds, converted to days.
this.speedUpFactor = 100; // speed up factor for simulation, 60 means 1 minute per simulated second
this.speedUpFactor = 1; // speed up factor for simulation, 60 means 1 minute per simulated second
}
/**
@@ -54,9 +53,15 @@ class Reactor {
* @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
*/
set setInfluent(input) {
let index_in = input.payload.inlet;
this.Fs[index_in] = input.payload.F;
this.Cs_in[index_in] = input.payload.C;
const i_in = input.payload.inlet;
if (this.Fs.length <= i_in) {
this.logger.debug(`Adding new inlet index ${i_in}.`);
this.Fs.push(0);
this.Cs_in.push(Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
this.setInfluent = input;
}
this.Fs[i_in] = input.payload.F;
this.Cs_in[i_in] = input.payload.C;
}
/**
@@ -69,13 +74,20 @@ class Reactor {
/**
* Getter for effluent data.
* @returns {object} Effluent data object (msg), defaults to inlet 0.
* @returns {object} Effluent data object (msg).
*/
get getEffluent() { // getter for Effluent, defaults to inlet 0
if (isArray(this.state.at(-1))) {
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state.at(-1) }, timestamp: this.currentTime };
get getEffluent() {
const Cs = isArray(this.state.at(-1)) ? this.state.at(-1) : this.state;
const effluent = [{ topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: Cs }, timestamp: this.currentTime }];
if (this.returnPump) {
const recirculationFlow = this.returnPump.measurements.type("flow").variant("measured").position("atEquipment").getCurrentValue();
// constrain flow to prevent negatives
const F_main = Math.max(effluent[0].payload.F - recirculationFlow, 0);
const F_sidestream = effluent[0].payload.F < recirculationFlow ? effluent[0].payload.F : recirculationFlow;
effluent[0].payload.F = F_main;
effluent.push({ topic: "Fluent", payload: { inlet: 1, F: F_sidestream, C: Cs }, timestamp: this.currentTime });
}
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state }, timestamp: this.currentTime };
return effluent;
}
/**
@@ -85,7 +97,7 @@ class Reactor {
* @returns {number} - Calculated OTR [g O2 d-1 m-3].
*/
_calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
let S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
const S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
return this.kla * (S_O_sat - S_O);
}
@@ -102,16 +114,30 @@ class Reactor {
}
}
/**
* Register child function required for child registration.
* @param {object} child
* @param {string} softwareType
*/
registerChild(child, softwareType) {
if(!child) {
this.logger.error(`Invalid ${softwareType} child provided.`);
return;
}
switch (softwareType) {
case "measurement":
this.logger.debug(`Registering measurement child.`);
this.logger.debug(`Registering measurement child...`);
this._connectMeasurement(child);
break;
case "reactor":
this.logger.debug(`Registering reactor child.`);
this.logger.debug(`Registering reactor child...`);
this._connectReactor(child);
break;
case "machine":
this.logger.debug(`Registering machine child...`);
this._connectMachine(child);
break;
default:
this.logger.error(`Unrecognized softwareType: ${softwareType}`);
@@ -119,11 +145,6 @@ class Reactor {
}
_connectMeasurement(measurementChild) {
if (!measurementChild) {
this.logger.warn("Invalid measurement provided.");
return;
}
const position = measurementChild.config.functionality.positionVsParent;
const measurementType = measurementChild.config.asset.type;
const eventName = `${measurementType}.measured.${position}`;
@@ -145,28 +166,26 @@ class Reactor {
_connectReactor(reactorChild) {
if (!reactorChild) {
this.logger.warn("Invalid reactor provided.");
return;
}
if (reactorChild.functionality.positionVsParent != "upstream") {
this.logger.warn("Reactor children of reactors should always be upstream.");
}
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
if (reactorChild.config.functionality.positionVsParent != "upstream") {
this.logger.warn("Reactor children of other reactors should always be upstream!");
}
// set upstream and downstream reactor variable in current and child nodes respectively for easy access
this.upstreamReactor = reactorChild;
reactorChild.downstreamReactor = this;
reactorChild.emitter.on("stateChange", (data) => {
reactorChild.emitter.on("stateChange", (eventData) => { // Triggers state update in downstream reactor.
this.logger.debug(`State change of upstream reactor detected.`);
this.updateState(data);
this.updateState(eventData);
});
}
_connectMachine(machineChild) {
if (machineChild.config.functionality.positionVsParent == "downstream") {
machineChild.upstreamSource = this;
this.returnPump = machineChild;
}
}
_updateMeasurement(measurementType, value, position, context) {
this.logger.debug(`---------------------- updating ${measurementType} ------------------ `);
@@ -186,22 +205,32 @@ class Reactor {
* Update the reactor state based on the new time.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
updateState(newTime = Date.now()) { // expect update with timestamp
const day2ms = 1000 * 60 * 60 * 24;
if (this.upstreamReactor) {
this.setInfluent = this.upstreamReactor.getEffluent;
updateState(newTime) {
if (!this.currentTime) { // initialise currentTime variable
this.currentTime = newTime;
return;
}
let n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*day2ms));
if (n_iter) {
let n = 0;
while (n < n_iter) {
this.tick(this.timeStep);
n += 1;
}
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
this.emitter.emit("stateChange", this.currentTime);
if (this.upstreamReactor) { // grab main effluent upstream reactor
this.setInfluent = this.upstreamReactor.getEffluent[0];
}
const n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*DAY2MS));
if (n_iter == 0) { // no update required, change in currentTime smaller than time step
return;
}
let n = 0;
while (n < n_iter) {
this.tick(this.timeStep);
n += 1;
}
this.currentTime += n_iter * this.timeStep * DAY2MS / this.speedUpFactor;
this.emitter.emit("stateChange", this.currentTime); // update downstream reactors
if (this.returnPump) { // update recirculation pump state
this.returnPump.updateSourceSink();
}
}
}
@@ -216,6 +245,23 @@ class Reactor_CSTR extends Reactor {
this.state = config.initialState;
}
_updateMeasurement(measurementType, value, position, context) {
switch(measurementType) {
case "quantity (oxygen)":
this.state[ASM_CONSTANTS.S_O_INDEX] = value;
break;
case "quantity (ammonium)":
this.state[ASM_CONSTANTS.S_NH_INDEX] = value;
break;
case "quantity (nox)":
this.state[ASM_CONSTANTS.S_NO_INDEX] = value;
break;
default:
super._updateMeasurement(measurementType, value, position, context);
}
}
/**
* Tick the reactor state using the forward Euler method.
* @param {number} time_step - Time step for the simulation [d].
@@ -225,8 +271,8 @@ class Reactor_CSTR extends Reactor {
const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0];
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
const reaction = this.asm.compute_dC(this.state, this.temperature);
const transfer = Array(NUM_SPECIES).fill(0.0);
transfer[S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
const transfer = Array(ASM_CONSTANTS.NUM_SPECIES).fill(0.0);
transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[ASM_CONSTANTS.S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
@@ -252,10 +298,8 @@ class Reactor_PFR extends Reactor {
this.d_x = this.length / this.n_x;
this.A = this.volume / this.length; // crosssectional area [m2]
this.alpha = config.alpha;
this.state = Array.from(Array(this.n_x), () => config.initialState.slice());
this.extendedState = Array.from(Array(this.n_x + 2*BC_PADDING), () => new Array(NUM_SPECIES).fill(0));
this.extendedState = Array.from(Array(this.n_x + 2*BC_PADDING), () => new Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
// initialise extended state
this.state.forEach((row, i) => this.extendedState[i+BC_PADDING] = row);
@@ -277,13 +321,23 @@ class Reactor_PFR extends Reactor {
this.D = this._constrainDispersion(input.payload);
}
_connectReactor(reactorChild) {
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
}
super._connectReactor(reactorChild);
}
/**
* Update the reactor state based on the new time. Performs checks specific to PFR.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
updateState(newTime) {
super.updateState(newTime);
// let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
this.D = this._constrainDispersion(this.D);
let Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
this.D = this._constrainDispersion(this.D); // constrains D to minimum dispersion, so that local Péclet number is always above 2
const Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
// (Pe_local >= 2) && this.logger.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
(Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
if(DEBUG) {
@@ -306,15 +360,15 @@ class Reactor_PFR extends Reactor {
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.extendedState);
const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.extendedState);
const reaction = this.extendedState.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
const transfer = Array.from(Array(this.n_x+2*BC_PADDING), () => new Array(NUM_SPECIES).fill(0));
const transfer = Array.from(Array(this.n_x+2*BC_PADDING), () => new Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
transfer[i][S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
}
} else {
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
transfer[i][S_O_INDEX] = this._calcOTR(this.extendedState[i][S_O_INDEX], this.temperature) * this.n_x/(this.n_x-2);
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) {
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this._calcOTR(this.extendedState[i][ASM_CONSTANTS.S_O_INDEX], this.temperature);
}
}
@@ -336,10 +390,19 @@ class Reactor_PFR extends Reactor {
}
_updateMeasurement(measurementType, value, position, context) {
const grid_pos = Math.round(context.distance / this.config.length * this.n_x);
// naive approach for reconciling measurements and simulation
// could benefit from Kalman filter?
switch(measurementType) {
case "quantity (oxygen)":
let grid_pos = Math.round(context.distance / this.config.length * this.n_x);
this.state[grid_pos][S_O_INDEX] = value; // naive approach for reconciling measurements and simulation
this.state[grid_pos][ASM_CONSTANTS.S_O_INDEX] = value;
break;
case "quantity (ammonium)":
this.state[grid_pos][ASM_CONSTANTS.S_NH_INDEX] = value;
break;
case "quantity (nox)":
this.state[grid_pos][ASM_CONSTANTS.S_NO_INDEX] = value;
break;
default:
super._updateMeasurement(measurementType, value, position, context);
@@ -352,38 +415,36 @@ class Reactor_PFR extends Reactor {
* for outlet, apply regular Danckwerts BC (Neumann BC with no flux)
*/
_applyBoundaryConditions() {
if (this.upstreamReactor) {
for (let i = 0; i < BC_PADDING; i++) {
this.extendedState[i] = this.upstreamReactor.state.at(i-BC_PADDING);
}
// Upstream BC
if (this.upstreamReactor && this.upstreamReactor.config.reactor_type == "PFR") {
// Open boundary, if upstream reactor is PFR
this.extendedState.splice(0, BC_PADDING, ...this.upstreamReactor.state.slice(-BC_PADDING));
} else {
if (math.sum(this.Fs) > 0) { // Danckwerts BC
if (math.sum(this.Fs) > 0) {
// Danckwerts BC
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
const BC_dispersion_term = (1-this.alpha)*this.D*this.A/(math.sum(this.Fs)*this.d_x);
const BC_dispersion_term = this.D*this.A/(math.sum(this.Fs)*this.d_x);
this.extendedState[BC_PADDING] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, this.extendedState[BC_PADDING+1])));
// Numerical boundary condition (first-order accurate)
this.extendedState[BC_PADDING-1] = math.add(math.multiply(2, this.extendedState[BC_PADDING]), math.multiply(-2, this.extendedState[BC_PADDING+2]), this.extendedState[BC_PADDING+3]);
} else {
for (let i = 0; i < BC_PADDING; i++) {
this.extendedState[i] = this.extendedState[BC_PADDING];
}
// Neumann BC (no flux)
this.extendedState.fill(this.extendedState[BC_PADDING], 0, BC_PADDING);
}
}
if (this.downstreamReactor) {
for (let i = 0; i < BC_PADDING; i++) {
this.extendedState[this.n_x+BC_PADDING+i] = this.downstreamReactor.state[i];
}
// Downstream BC
if (this.downstreamReactor && this.downstreamReactor.config.reactor_type == "PFR") {
// Open boundary, if downstream reactor is PFR
this.extendedState.splice(this.n_x+BC_PADDING, BC_PADDING, ...this.downstreamReactor.state.slice(0, BC_PADDING));
} else {
// Neumann BC (no flux)
for (let i = 0; i < BC_PADDING; i++) {
this.extendedState[BC_PADDING+this.n_x+i] = this.extendedState.at(-1-BC_PADDING);
}
this.extendedState.fill(this.extendedState.at(-1-BC_PADDING), BC_PADDING+this.n_x);
}
}
/**
* Create finite difference first derivative operator.
* @returns {Array} - First derivative operator matrix.
*/
_makeDoperator() { // create gradient operator
const D_size = this.n_x+2*BC_PADDING;
@@ -399,7 +460,6 @@ class Reactor_PFR extends Reactor {
/**
* Create central finite difference second derivative operator.
* @returns {Array} - Second derivative operator matrix.
*/
_makeD2operator() { // create the central second derivative operator
const D_size = this.n_x+2*BC_PADDING;
@@ -412,6 +472,9 @@ class Reactor_PFR extends Reactor {
return D2;
}
/**
* Constrains dispersion so that local Péclet number stays below 2. Needed for stable central differencing method.
*/
_constrainDispersion(D) {
const Dmin = math.sum(this.Fs) * this.d_x / (1.999 * this.A);
if (D < Dmin) {
@@ -422,17 +485,4 @@ class Reactor_PFR extends Reactor {
}
}
module.exports = { Reactor_CSTR, Reactor_PFR };
// DEBUG
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
// const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state);
// Reactor.Cs_in[0] = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.];
// Reactor.Fs[0] = 10;
// Reactor.D = 0.01;
// let N = 0;
// while (N < 5000) {
// console.log(Reactor.tick(0.001));
// N += 1;
// }
module.exports = { Reactor_CSTR, Reactor_PFR };