13 Commits

7 changed files with 1071 additions and 167 deletions

View File

@@ -1,17 +1,20 @@
# reactor
# Reactor: Advanced Hydraulic Tank & Biological Process Simulator
Reactor: Advanced Hydraulic Tank & Biological Process Simulator
A comprehensive reactor class for wastewater treatment simulation featuring non-ideal plug flow hydraulics and ASM3 biological modeling.
A comprehensive reactor class for wastewater treatment simulation featuring plug flow hydraulics, ASM1-ASM3 biological modeling, and multi-sectional concentration tracking. Implements hydraulic retention time calculations, dispersion modeling, and real-time biological reaction kinetics for accurate process simulation.
## How to use this Node
### Set Node Properties
- Set reactor type: Continuously Stirred Tank Reactor (CSTR) or Plug Flow Reactor (PFR)
- Configure reactor sizing: Set reactor volume [ $m^3$ ] and (for PFRs) set the reactor length [ $m$ ]
- (For PFRs) set reactor spatial resolution: A value of 10 or 20 is good. A higher resolution means more accurate simulation, at higher computational expense. Note that connected reactors must have similar Δx values.
- Set initial state of reactor: set the intial concentrations of all relevant reaction species.
- (Optional) set $k_L a$ to calculate OTR internally, rather than providing it explicitly, using simple mass transfer model.
Key Features:
Plug Flow Hydraulics: Multi-section reactor with configurable sectioning factor and dispersion modeling
ASM1 Integration: Complete biological nutrient removal modeling with 13 state variables (COD, nitrogen, phosphorus)
Dynamic Volume Control: Automatic section management with overflow handling and retention time calculations
Oxygen Transfer: Saturation-limited O2 transfer with Fick's law slowdown effects and solubility curves
Real-time Kinetics: Continuous biological reaction rate calculations with configurable time acceleration
Weighted Averaging: Volume-based concentration mixing for accurate mass balance calculations
Child Registration: Integration with diffuser systems and upstream/downstream reactor networks
Supports complex biological treatment train modeling with temperature compensation, sludge calculations, and comprehensive process monitoring for wastewater treatment plant optimization and regulatory compliance.
### Accepted Node inputs
- \{ topic: clock, payload: \<timestamp [ $ms$ ]\> \} - **required** clock signal to make reactor update state.
- \{ topic: Fluent, payload: \{ F: \<flow rate [ $m^3 d^{-1}$ ]\>, C: \<array with concentrations\> \} \} - sets inflow composition and flow rate.
- \{ topic: Dispersion, payload: \<dispersion coefficient in [ $m d^{-2}$ ]\> \} - sets PFR dispersion coefficient.
- \{ topic: OTR, payload: \<oxygen transfer rate [ $ g d^{-1} m^{-3}$ ]\> \} - sets current oxygen transfer rate.
## Troubleshooting
Check for possible numerical warnings. These tell you which simulation parameters to change. If solutions appear to be oscillate, try reducing the time step. If solutions appear to be too dispersive, try increasing the reactor resolution.

View File

@@ -0,0 +1,838 @@
[
{
"id": "a6b85e226d144df1",
"type": "tab",
"label": "Flow 3",
"disabled": false,
"info": "",
"env": []
},
{
"id": "a94c85d65c71b66a",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "Influx composition 1",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
},
{
"p": "timestamp",
"v": "",
"vt": "date"
}
],
"repeat": "864",
"crontab": "",
"once": true,
"onceDelay": "5",
"topic": "Fluent",
"payload": "{\"inlet\":0,\"F\":6600,\"C\":[0,30,100,16,0,0,5,25,75,30,0,0,125]}",
"payloadType": "json",
"x": 260,
"y": 240,
"wires": [
[
"b726c5be41c24dcb"
]
]
},
{
"id": "0ebfbbf57bba79f1",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "timestamp",
"v": "",
"vt": "date"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "1",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "clock",
"x": 300,
"y": 280,
"wires": [
[
"b726c5be41c24dcb"
]
]
},
{
"id": "cd0e4a78d1a59a6e",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "Dispersion",
"payload": "100",
"payloadType": "num",
"x": 260,
"y": 320,
"wires": [
[
"b726c5be41c24dcb",
"b0819ff9a4010227"
]
]
},
{
"id": "b726c5be41c24dcb",
"type": "reactor",
"z": "a6b85e226d144df1",
"name": "Anoxic 1",
"reactor_type": "PFR",
"volume": "730",
"length": "10",
"resolution_L": "20",
"kla": "",
"S_O_init": 0,
"S_I_init": 30,
"S_S_init": 100,
"S_NH_init": 16,
"S_N2_init": 0,
"S_NO_init": 0,
"S_HCO_init": 5,
"X_I_init": 25,
"X_S_init": 75,
"X_H_init": 30,
"X_STO_init": 0,
"X_A_init": "30",
"X_TS_init": "132",
"timeStep": "2",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "upstream",
"x": 540,
"y": 240,
"wires": [
[
"057ab2dcd4739aef"
],
[],
[
"b0819ff9a4010227",
"214aff7330e81d3f",
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "b0819ff9a4010227",
"type": "reactor",
"z": "a6b85e226d144df1",
"name": "Aerobic 1",
"reactor_type": "PFR",
"volume": "1460",
"length": "20",
"resolution_L": "40",
"kla": "2400",
"S_O_init": 0,
"S_I_init": 30,
"S_S_init": 100,
"S_NH_init": 16,
"S_N2_init": 0,
"S_NO_init": 0,
"S_HCO_init": 5,
"X_I_init": 25,
"X_S_init": 75,
"X_H_init": "500",
"X_STO_init": 0,
"X_A_init": "30",
"X_TS_init": "132",
"timeStep": "2",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "upstream",
"x": 940,
"y": 240,
"wires": [
[
"e0049d66fefeb3e6"
],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "214aff7330e81d3f",
"type": "rotatingMachine",
"z": "a6b85e226d144df1",
"speed": 1,
"startup": 0,
"warmup": 0,
"shutdown": 0,
"cooldown": 0,
"machineCurve": {},
"flowNumber": "1",
"uuid": "",
"supplier": "Hidrostal",
"category": "Pumps",
"assetType": "Centrifugal",
"model": "hidrostal-H05K-S03R",
"unit": "l/s",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "downstream",
"positionIcon": "→",
"hasDistance": false,
"distance": "",
"x": 740,
"y": 340,
"wires": [
[],
[],
[
"b0819ff9a4010227"
]
]
},
{
"id": "0be74d5c77febec1",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 900,
"o_max": 1200,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Flow",
"model": "VegaFlow 10",
"unit": "m³/h",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 600,
"y": 460,
"wires": [
[],
[],
[
"214aff7330e81d3f"
]
]
},
{
"id": "668f41a05698f21b",
"type": "inject",
"z": "a6b85e226d144df1",
"name": "",
"props": [
{
"p": "payload"
},
{
"p": "topic",
"vt": "str"
}
],
"repeat": "",
"crontab": "",
"once": true,
"onceDelay": 0.1,
"topic": "execSequence",
"payload": "{\"source\":\"parent\",\"action\":\"execSequence\",\"parameter\":\"startup\"}",
"payloadType": "json",
"x": 330,
"y": 400,
"wires": [
[
"214aff7330e81d3f",
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "47120bc82aa7bf49",
"type": "settler",
"z": "a6b85e226d144df1",
"name": "",
"model": "mb-model",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "atEquipment",
"x": 1100,
"y": 400,
"wires": [
[
"b1af49d1d0eb6783",
"6baffb7954cf0cce"
],
[],
[]
]
},
{
"id": "2ec38c4ae9aa6e7e",
"type": "rotatingMachine",
"z": "a6b85e226d144df1",
"speed": 1,
"startup": 0,
"warmup": 0,
"shutdown": 0,
"cooldown": 0,
"machineCurve": {},
"flowNumber": "2",
"uuid": "",
"supplier": "Hidrostal",
"category": "Pumps",
"assetType": "Centrifugal",
"model": "hidrostal-H05K-S03R",
"unit": "l/s",
"enableLog": true,
"logLevel": "info",
"positionVsParent": "downstream",
"positionIcon": "→",
"hasDistance": false,
"distance": "",
"x": 860,
"y": 460,
"wires": [
[],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "21eff612371519c5",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 500,
"o_max": 660,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Flow",
"model": "VegaFlow 10",
"unit": "m³/h",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 720,
"y": 580,
"wires": [
[],
[],
[
"2ec38c4ae9aa6e7e"
]
]
},
{
"id": "057ab2dcd4739aef",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\") {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO},\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 720,
"y": 180,
"wires": [
[
"02a932317c76721e"
]
]
},
{
"id": "02a932317c76721e",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "ae38454098a37db0",
"name": "Anoxic reactor",
"label": "Anoxic reactor",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 920,
"y": 180,
"wires": [
[]
]
},
{
"id": "e0049d66fefeb3e6",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\") {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO},\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1140,
"y": 220,
"wires": [
[
"70eeb4c8caa2db77"
]
]
},
{
"id": "70eeb4c8caa2db77",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "ae38454098a37db0",
"name": "Aerobic reactor",
"label": "Aerobic reactor / recirculation",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1340,
"y": 220,
"wires": [
[]
]
},
{
"id": "b1af49d1d0eb6783",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\" || msg.payload.inlet == 0) {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"X_I\", \"Y\": X_I},\n { \"Series\": \"X_S\", \"Y\": X_S},\n { \"Series\": \"X_H\", \"Y\": X_H},\n { \"Series\": \"X_STO\", \"Y\": X_STO},\n { \"Series\": \"X_A\", \"Y\": X_A},\n { \"Series\": \"X_TS\", \"Y\": X_TS}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1320,
"y": 380,
"wires": [
[
"0a3ffa69046a4844"
]
]
},
{
"id": "0a3ffa69046a4844",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "de8b029d69f26c0e",
"name": "Sludge composition",
"label": "Sludge composition",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1530,
"y": 380,
"wires": [
[]
]
},
{
"id": "272b4b0050479d13",
"type": "measurement",
"z": "a6b85e226d144df1",
"name": "sensor",
"scaling": false,
"i_min": 0,
"i_max": 0,
"i_offset": 0,
"o_min": 3200,
"o_max": 4000,
"simulator": true,
"smooth_method": "",
"count": 10,
"uuid": "",
"supplier": "Vega",
"category": "Sensor",
"assetType": "Quantity (TSS)",
"model": "VegaSolidsProbe",
"unit": "g/m³",
"enableLog": true,
"logLevel": "error",
"positionVsParent": "atEquipment",
"positionIcon": "⊥",
"hasDistance": false,
"distance": "",
"x": 930,
"y": 580,
"wires": [
[],
[],
[
"47120bc82aa7bf49"
]
]
},
{
"id": "6baffb7954cf0cce",
"type": "function",
"z": "a6b85e226d144df1",
"name": "Data_converter",
"func": "if (msg.topic != \"Fluent\" || msg.payload.inlet == 1 || msg.payload.inlet == 2) {\n return;\n}\n\nconst [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = msg.payload.C;\n\nmsg = {payload: [\n { \"Series\": \"S_O\", \"Y\": S_O},\n { \"Series\": \"S_I\", \"Y\": S_I},\n { \"Series\": \"S_S\", \"Y\": S_S},\n { \"Series\": \"S_NH\", \"Y\": S_NH},\n { \"Series\": \"S_N2\", \"Y\": S_N2},\n { \"Series\": \"S_NO\", \"Y\": S_NO},\n { \"Series\": \"S_HCO\", \"Y\": S_HCO}\n ]};\n\nreturn msg;",
"outputs": 1,
"timeout": 0,
"noerr": 0,
"initialize": "",
"finalize": "",
"libs": [],
"x": 1320,
"y": 420,
"wires": [
[
"df288814a2a9a2b1"
]
]
},
{
"id": "df288814a2a9a2b1",
"type": "ui-chart",
"z": "a6b85e226d144df1",
"group": "de8b029d69f26c0e",
"name": "Effluent",
"label": "Effluent",
"order": 9007199254740991,
"chartType": "line",
"category": "Series",
"categoryType": "property",
"xAxisLabel": "",
"xAxisProperty": "",
"xAxisPropertyType": "timestamp",
"xAxisType": "time",
"xAxisFormat": "",
"xAxisFormatType": "auto",
"xmin": "",
"xmax": "",
"yAxisLabel": "",
"yAxisProperty": "Y",
"yAxisPropertyType": "property",
"ymin": "",
"ymax": "",
"bins": 10,
"action": "append",
"stackSeries": false,
"pointShape": "circle",
"pointRadius": 4,
"showLegend": true,
"removeOlder": "8",
"removeOlderUnit": "3600",
"removeOlderPoints": "2000",
"colors": [
"#0095ff",
"#ff0000",
"#ff7f0e",
"#2ca02c",
"#a347e1",
"#d62728",
"#ff9896",
"#9467bd",
"#c5b0d5"
],
"textColor": [
"#666666"
],
"textColorDefault": true,
"gridColor": [
"#e5e5e5"
],
"gridColorDefault": true,
"width": 6,
"height": 8,
"className": "",
"interpolation": "linear",
"x": 1520,
"y": 420,
"wires": [
[]
]
},
{
"id": "ae38454098a37db0",
"type": "ui-group",
"name": "Group 3",
"page": "ca564642bfc5606c",
"width": 6,
"height": 1,
"order": -1,
"showTitle": true,
"className": "",
"visible": "true",
"disabled": "false",
"groupType": "default"
},
{
"id": "de8b029d69f26c0e",
"type": "ui-group",
"name": "Group 4",
"page": "ca564642bfc5606c",
"width": 6,
"height": 1,
"order": -1,
"showTitle": true,
"className": "",
"visible": "true",
"disabled": "false",
"groupType": "default"
},
{
"id": "ca564642bfc5606c",
"type": "ui-page",
"name": "PFR",
"ui": "90eb5f47d95b4087",
"path": "/page2",
"icon": "home",
"layout": "grid",
"theme": "2c8bcaa0046b4323",
"breakpoints": [
{
"name": "Default",
"px": "0",
"cols": "3"
},
{
"name": "Tablet",
"px": "576",
"cols": "6"
},
{
"name": "Small Desktop",
"px": "768",
"cols": "9"
},
{
"name": "Desktop",
"px": "1024",
"cols": "12"
}
],
"order": -1,
"className": "",
"visible": "true",
"disabled": "false"
},
{
"id": "90eb5f47d95b4087",
"type": "ui-base",
"name": "Dashboard",
"path": "/dashboard",
"appIcon": "",
"includeClientData": true,
"acceptsClientConfig": [
"ui-notification",
"ui-control"
],
"showPathInSidebar": false,
"headerContent": "page",
"navigationStyle": "default",
"titleBarStyle": "default",
"showReconnectNotification": true,
"notificationDisplayTime": 1,
"showDisconnectNotification": true,
"allowInstall": true
},
{
"id": "2c8bcaa0046b4323",
"type": "ui-theme",
"name": "Default",
"colors": {
"surface": "#ffffff",
"primary": "#0094ce",
"bgPage": "#eeeeee",
"groupBg": "#ffffff",
"groupOutline": "#cccccc"
},
"sizes": {
"density": "default",
"pagePadding": "12px",
"groupGap": "12px",
"groupBorderRadius": "4px",
"widgetGap": "12px"
}
}
]

View File

@@ -102,6 +102,19 @@
} else {
$(".PFR").show();
}
const updateDx = () => {
const length = parseFloat($("#node-input-length").val()) || 0;
const resolution = parseFloat($("#node-input-resolution_L").val()) || 1;
const dx = resolution > 0 ? (length / resolution).toFixed(6) : "N/A";
$("#dx-output").text(dx + " m");
};
// Set up event listeners for real-time updates
$("#node-input-length, #node-input-resolution_L").on("change keyup", updateDx);
// Initial calculation
updateDx();
},
oneditsave: function() {
// save logger fields
@@ -140,10 +153,19 @@
<label for="node-input-length"><i class="fa fa-tag"></i> Reactor length [m]</label>
<input type="text" id="node-input-length" placeholder="m">
</div>
<h2> Simulation parameters </h2>
<div class="form-row">
<label for="node-input-timeStep"><i class="fa fa-tag"></i> Time step [s]</label>
<input type="text" id="node-input-timeStep" placeholder="s">
</div>
<div class="form-row PFR">
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label>
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Spatial resolution</label>
<input type="text" id="node-input-resolution_L" placeholder="#">
</div>
<div class="form-row PFR">
<label for="node-input-dx"><i class="fa fa-tag"></i> Δx (length / resolution) [m]</label>
<span id="dx-output" style="display: inline-block; padding: 8px; font-weight: bold;">--</span>
</div>
<h3> Internal mass transfer calculation (optional) </h3>
<div class="form-row">
<label for="node-input-kla"><i class="fa fa-tag"></i> kLa [d-1]</label>
@@ -203,11 +225,6 @@
<label for="node-input-X_TS_init"><i class="fa fa-tag"></i> Initial total suspended solids [g TSS m-3]</label>
<input type="text" id="node-input-X_TS_init" class="concentrations">
</div>
<h2> Simulation parameters </h2>
<div class="form-row">
<label for="node-input-timeStep"><i class="fa fa-tag"></i> Time step [s]</label>
<input type="text" id="node-input-timeStep" placeholder="s">
</div>
<!-- Logger fields injected here -->
<div id="logger-fields-placeholder"></div>

View File

@@ -34,7 +34,6 @@ class nodeClass {
switch (msg.topic) {
case "clock":
this.source.updateState(msg.timestamp);
send([msg, null, null]);
break;
case "Fluent":
this.source.setInfluent = msg;
@@ -42,9 +41,6 @@ class nodeClass {
case "OTR":
this.source.setOTR = msg;
break;
case "Temperature":
this.source.setTemperature = msg;
break;
case "Dispersion":
this.source.setDispersion = msg;
break;

View File

@@ -7,17 +7,7 @@ const ASM_CONSTANTS = {
NUM_SPECIES: 13
};
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
*/
class ASM3 {
constructor() {
/**
* Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = {
const KINETIC_CONSTANTS = {
// Hydrolysis
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
@@ -44,11 +34,7 @@ class ASM3 {
b_A_NO: 0.10 // anoxic respiration rate [d-1]
};
/**
* Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = {
const STOICHIOMETRIC_CONSTANTS = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
@@ -77,6 +63,24 @@ class ASM3 {
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
*/
class ASM3 {
constructor() {
/**
* Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = KINETIC_CONSTANTS;
/**
* Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = STOICHIOMETRIC_CONSTANTS;
/**
* Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters.
* These parameters are used to adjust reaction rates based on temperature.
@@ -215,4 +219,4 @@ class ASM3 {
}
}
module.exports = { ASM3, ASM_CONSTANTS };
module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };

View File

@@ -7,17 +7,7 @@ const ASM_CONSTANTS = {
NUM_SPECIES: 13
};
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3).
*/
class ASM3 {
constructor() {
/**
* Kinetic parameters for ASM3 at 20 C.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = {
const KINETIC_CONSTANTS = {
// Hydrolysis
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
@@ -44,11 +34,7 @@ class ASM3 {
b_A_NO: 0.05 // anoxic respiration rate [d-1]
};
/**
* Stoichiometric and composition parameters for ASM3.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = {
const STOICHIOMETRIC_CONSTANTS = {
// Fractions
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
@@ -77,6 +63,24 @@ class ASM3 {
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3).
*/
class ASM3 {
constructor() {
/**
* Kinetic parameters for ASM3 at 20 C.
* @property {Object} kin_params - Kinetic parameters
*/
this.kin_params = KINETIC_CONSTANTS;
/**
* Stoichiometric and composition parameters for ASM3.
* @property {Object} stoi_params - Stoichiometric parameters
*/
this.stoi_params = STOICHIOMETRIC_CONSTANTS;
/**
* Temperature theta parameters for ASM3.
* These parameters are used to adjust reaction rates based on temperature.
@@ -215,4 +219,4 @@ class ASM3 {
}
}
module.exports = { ASM3, ASM_CONSTANTS };
module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };

View File

@@ -10,9 +10,9 @@ const mathConfig = {
const math = create(all, mathConfig);
const BC_PADDING = 2;
const BC_PADDING = 2; // Boundary Condition padding for open boundaries in extendedState variable
const DEBUG = false;
const DAY2MS = 1000 * 60 * 60 * 24;
const DAY2MS = 1000 * 60 * 60 * 24; // convert between days and milliseconds
class Reactor {
/**
@@ -25,13 +25,14 @@ class Reactor {
this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name);
this.emitter = new EventEmitter();
this.measurements = new MeasurementContainer();
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
this.childRegistrationUtils = new childRegistrationUtils(this); // child registration utility
// placeholder variables for children and parents
this.upstreamReactor = null;
this.downstreamReactor = null;
this.returnPump = null;
this.asm = new ASM3();
this.asm = new ASM3(); // Reaction model
this.volume = config.volume; // fluid volume reactor [m3]
@@ -42,9 +43,9 @@ class Reactor {
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
this.currentTime = Date.now(); // milliseconds since epoch [ms]
this.currentTime = null; // milliseconds since epoch [ms]
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step in seconds, converted to days.
this.speedUpFactor = 100; // speed up factor for simulation, 60 means 1 minute per simulated second
this.speedUpFactor = 1; // speed up factor for simulation, 60 means 1 minute per simulated second
}
/**
@@ -113,6 +114,11 @@ class Reactor {
}
}
/**
* Register child function required for child registration.
* @param {object} child
* @param {string} softwareType
*/
registerChild(child, softwareType) {
if(!child) {
this.logger.error(`Invalid ${softwareType} child provided.`);
@@ -161,18 +167,14 @@ class Reactor {
_connectReactor(reactorChild) {
if (reactorChild.config.functionality.positionVsParent != "upstream") {
this.logger.warn("Reactor children of reactors should always be upstream.");
}
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
this.logger.warn("Reactor children of other reactors should always be upstream!");
}
// set upstream and downstream reactor variable in current and child nodes respectively for easy access
this.upstreamReactor = reactorChild;
reactorChild.downstreamReactor = this;
reactorChild.emitter.on("stateChange", (eventData) => {
reactorChild.emitter.on("stateChange", (eventData) => { // Triggers state update in downstream reactor.
this.logger.debug(`State change of upstream reactor detected.`);
this.updateState(eventData);
});
@@ -203,20 +205,32 @@ class Reactor {
* Update the reactor state based on the new time.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
updateState(newTime) { // expect update with timestamp
if (this.upstreamReactor) {
this.setInfluent = this.upstreamReactor.getEffluent[0]; // grab main effluent upstream reactor
updateState(newTime) {
if (!this.currentTime) { // initialise currentTime variable
this.currentTime = newTime;
return;
}
if (this.upstreamReactor) { // grab main effluent upstream reactor
this.setInfluent = this.upstreamReactor.getEffluent[0];
}
const n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*DAY2MS));
if (n_iter) {
if (n_iter == 0) { // no update required, change in currentTime smaller than time step
return;
}
let n = 0;
while (n < n_iter) {
this.tick(this.timeStep);
n += 1;
}
this.currentTime += n_iter * this.timeStep * DAY2MS / this.speedUpFactor;
this.emitter.emit("stateChange", this.currentTime);
this.emitter.emit("stateChange", this.currentTime); // update downstream reactors
if (this.returnPump) { // update recirculation pump state
this.returnPump.updateSourceSink();
}
}
}
@@ -231,6 +245,23 @@ class Reactor_CSTR extends Reactor {
this.state = config.initialState;
}
_updateMeasurement(measurementType, value, position, context) {
switch(measurementType) {
case "quantity (oxygen)":
this.state[ASM_CONSTANTS.S_O_INDEX] = value;
break;
case "quantity (ammonium)":
this.state[ASM_CONSTANTS.S_NH_INDEX] = value;
break;
case "quantity (nox)":
this.state[ASM_CONSTANTS.S_NO_INDEX] = value;
break;
default:
super._updateMeasurement(measurementType, value, position, context);
}
}
/**
* Tick the reactor state using the forward Euler method.
* @param {number} time_step - Time step for the simulation [d].
@@ -241,7 +272,7 @@ class Reactor_CSTR extends Reactor {
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
const reaction = this.asm.compute_dC(this.state, this.temperature);
const transfer = Array(ASM_CONSTANTS.NUM_SPECIES).fill(0.0);
transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[ASM_CONSTANTS.S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
@@ -290,13 +321,23 @@ class Reactor_PFR extends Reactor {
this.D = this._constrainDispersion(input.payload);
}
_connectReactor(reactorChild) {
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
}
super._connectReactor(reactorChild);
}
/**
* Update the reactor state based on the new time. Performs checks specific to PFR.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
updateState(newTime) {
super.updateState(newTime);
// let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
this.D = this._constrainDispersion(this.D);
this.D = this._constrainDispersion(this.D); // constrains D to minimum dispersion, so that local Péclet number is always above 2
const Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
// (Pe_local >= 2) && this.logger.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
(Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
if(DEBUG) {
@@ -375,8 +416,8 @@ class Reactor_PFR extends Reactor {
*/
_applyBoundaryConditions() {
// Upstream BC
if (this.upstreamReactor) {
// Open boundary
if (this.upstreamReactor && this.upstreamReactor.config.reactor_type == "PFR") {
// Open boundary, if upstream reactor is PFR
this.extendedState.splice(0, BC_PADDING, ...this.upstreamReactor.state.slice(-BC_PADDING));
} else {
if (math.sum(this.Fs) > 0) {
@@ -384,7 +425,7 @@ class Reactor_PFR extends Reactor {
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
const BC_dispersion_term = this.D*this.A/(math.sum(this.Fs)*this.d_x);
this.extendedState[BC_PADDING] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, this.extendedState[BC_PADDING+1])));
// Numerical boundary condition
// Numerical boundary condition (first-order accurate)
this.extendedState[BC_PADDING-1] = math.add(math.multiply(2, this.extendedState[BC_PADDING]), math.multiply(-2, this.extendedState[BC_PADDING+2]), this.extendedState[BC_PADDING+3]);
} else {
// Neumann BC (no flux)
@@ -393,8 +434,8 @@ class Reactor_PFR extends Reactor {
}
// Downstream BC
if (this.downstreamReactor) {
// Open boundary
if (this.downstreamReactor && this.downstreamReactor.config.reactor_type == "PFR") {
// Open boundary, if downstream reactor is PFR
this.extendedState.splice(this.n_x+BC_PADDING, BC_PADDING, ...this.downstreamReactor.state.slice(0, BC_PADDING));
} else {
// Neumann BC (no flux)
@@ -404,7 +445,6 @@ class Reactor_PFR extends Reactor {
/**
* Create finite difference first derivative operator.
* @returns {Array} - First derivative operator matrix.
*/
_makeDoperator() { // create gradient operator
const D_size = this.n_x+2*BC_PADDING;
@@ -420,7 +460,6 @@ class Reactor_PFR extends Reactor {
/**
* Create central finite difference second derivative operator.
* @returns {Array} - Second derivative operator matrix.
*/
_makeD2operator() { // create the central second derivative operator
const D_size = this.n_x+2*BC_PADDING;
@@ -433,6 +472,9 @@ class Reactor_PFR extends Reactor {
return D2;
}
/**
* Constrains dispersion so that local Péclet number stays below 2. Needed for stable central differencing method.
*/
_constrainDispersion(D) {
const Dmin = math.sum(this.Fs) * this.d_x / (1.999 * this.A);
if (D < Dmin) {