Files
rotatingMachine/src/specificClass.js
2025-11-05 17:15:47 +01:00

920 lines
32 KiB
JavaScript

const EventEmitter = require('events');
const {loadCurve,logger,configUtils,configManager,state, nrmse, MeasurementContainer, predict, interpolation , childRegistrationUtils} = require('generalFunctions');
const { name } = require('../../generalFunctions/src/convert/lodash/lodash._shimkeys');
class Machine {
/*------------------- Construct and set vars -------------------*/
constructor(machineConfig = {}, stateConfig = {}, errorMetricsConfig = {}) {
//basic setup
this.emitter = new EventEmitter(); // Own EventEmitter
this.logger = new logger(machineConfig.general.logging.enabled,machineConfig.general.logging.logLevel, machineConfig.general.name);
this.configManager = new configManager();
this.defaultConfig = this.configManager.getConfig('rotatingMachine'); // Load default config for rotating machine ( use software type name ? )
this.configUtils = new configUtils(this.defaultConfig);
// Load a specific curve
this.model = machineConfig.asset.model; // Get the model from the machineConfig
this.curve = this.model ? loadCurve(this.model) : null;
//Init config and check if it is valid
this.config = this.configUtils.initConfig(machineConfig);
//add unique name for this node.
this.config = this.configUtils.updateConfig(this.config, {general:{name: this.config.functionality?.softwareType + "_" + machineConfig.general.id}}); // add unique name if not present
if (!this.model || !this.curve) {
this.logger.error(`${!this.model ? 'Model not specified' : 'Curve not found for model ' + this.model} in machineConfig. Cannot make predictions.`);
// Set prediction objects to null to prevent method calls
this.predictFlow = null;
this.predictPower = null;
this.predictCtrl = null;
this.hasCurve = false;
}
else{
this.hasCurve = true;
this.config = this.configUtils.updateConfig(this.config, {
asset: { ...this.config.asset, machineCurve: this.curve }
});
machineConfig = { ...machineConfig, asset: { ...machineConfig.asset, machineCurve: this.curve } }; // Merge curve into machineConfig
this.predictFlow = new predict({ curve: this.config.asset.machineCurve.nq }); // load nq (x : ctrl , y : flow relationship)
this.predictPower = new predict({ curve: this.config.asset.machineCurve.np }); // load np (x : ctrl , y : power relationship)
this.predictCtrl = new predict({ curve: this.reverseCurve(this.config.asset.machineCurve.nq) }); // load reversed nq (x: flow, y: ctrl relationship)
}
this.state = new state(stateConfig, this.logger); // Init State manager and pass logger
this.errorMetrics = new nrmse(errorMetricsConfig, this.logger);
// Initialize measurements
this.measurements = new MeasurementContainer({
autoConvert: true,
windowSize: 50,
defaultUnits: {
pressure: 'mbar',
flow: this.config.general.unit,
power: 'kW',
temperature: 'C'
}
});
this.interpolation = new interpolation();
this.flowDrift = null;
this.currentMode = this.config.mode.current;
this.currentEfficiencyCurve = {};
this.cog = 0;
this.NCog = 0;
this.cogIndex = 0;
this.minEfficiency = 0;
this.absDistFromPeak = 0;
this.relDistFromPeak = 0;
// When position state changes, update position
this.state.emitter.on("positionChange", (data) => {
this.logger.debug(`Position change detected: ${data}`);
this.updatePosition();
});
//When state changes look if we need to do other updates
this.state.emitter.on("stateChange", (newState) => {
this.logger.debug(`State change detected: ${newState}`);
this._updateState();
});
this.child = {}; // object to hold child information so we know on what to subscribe
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
}
_updateState(){
const isOperational = this._isOperationalState();
if(!isOperational){
//overrule the last prediction this should be 0 now
this.measurements.type("flow").variant("predicted").position("downstream").value(0);
}
}
/*------------------- Register child events -------------------*/
registerChild(child, softwareType) {
this.logger.debug('Setting up child event for softwaretype ' + softwareType);
if(softwareType === "measurement"){
const position = child.config.functionality.positionVsParent;
const distance = child.config.functionality.distanceVsParent || 0;
const measurementType = child.config.asset.type;
const key = `${measurementType}_${position}`;
//rebuild to measurementype.variant no position and then switch based on values not strings or names.
const eventName = `${measurementType}.measured.${position}`;
this.logger.debug(`Setting up listener for ${eventName} from child ${child.config.general.name}`);
// Register event listener for measurement updates
child.measurements.emitter.on(eventName, (eventData) => {
this.logger.debug(`🔄 ${position} ${measurementType} from ${eventData.childName}: ${eventData.value} ${eventData.unit}`);
console.log(` Emitting... ${eventName} with data:`);
// Store directly in parent's measurement container
this.measurements
.type(measurementType)
.variant("measured")
.position(position)
.value(eventData.value, eventData.timestamp, eventData.unit);
// Call the appropriate handler
this._callMeasurementHandler(measurementType, eventData.value, position, eventData);
});
}
}
// Centralized handler dispatcher
_callMeasurementHandler(measurementType, value, position, context) {
switch (measurementType) {
case 'pressure':
this.updateMeasuredPressure(value, position, context);
break;
case 'flow':
this.updateMeasuredFlow(value, position, context);
break;
case 'temperature':
this.updateMeasuredTemperature(value, position, context);
break;
default:
this.logger.warn(`No handler for measurement type: ${measurementType}`);
// Generic handler - just update position
this.updatePosition();
break;
}
}
//---------------- END child stuff -------------//
// Method to assess drift using errorMetrics
assessDrift(measurement, processMin, processMax) {
this.logger.debug(`Assessing drift for measurement: ${measurement} processMin: ${processMin} processMax: ${processMax}`);
const predictedMeasurement = this.measurements.type(measurement).variant("predicted").position("downstream").getAllValues().values;
const measuredMeasurement = this.measurements.type(measurement).variant("measured").position("downstream").getAllValues().values;
if (!predictedMeasurement || !measuredMeasurement) return null;
return this.errorMetrics.assessDrift(
predictedMeasurement,
measuredMeasurement,
processMin,
processMax
);
}
reverseCurve(curve) {
const reversedCurve = {};
for (const [pressure, values] of Object.entries(curve)) {
reversedCurve[pressure] = {
x: [...values.y], // Previous y becomes new x
y: [...values.x] // Previous x becomes new y
};
}
return reversedCurve;
}
// -------- Config -------- //
updateConfig(newConfig) {
this.config = this.configUtils.updateConfig(this.config, newConfig);
}
// -------- Mode and Input Management -------- //
isValidSourceForMode(source, mode) {
const allowedSourcesSet = this.config.mode.allowedSources[mode] || [];
const allowed = allowedSourcesSet.has(source);
allowed?
this.logger.debug(`source is allowed proceeding with ${source} for mode ${mode}`) :
this.logger.warn(`${source} is not allowed in mode ${mode}`);
return allowed;
}
isValidActionForMode(action, mode) {
const allowedActionsSet = this.config.mode.allowedActions[mode] || [];
const allowed = allowedActionsSet.has(action);
allowed ?
this.logger.debug(`Action is allowed proceeding with ${action} for mode ${mode}`) :
this.logger.warn(`${action} is not allowed in mode ${mode}`);
return allowed;
}
async handleInput(source, action, parameter) {
this.logger.debug("hello");
//sanitize input
if( typeof action !== 'string'){this.logger.error(`Action must be string`); return;}
//convert to lower case to avoid to many mistakes in commands
action = action.toLowerCase();
// check for validity of the request
if(!this.isValidActionForMode(action,this.currentMode)){return ;}
if (!this.isValidSourceForMode(source, this.currentMode)) {return ;}
this.logger.debug("hello2");
this.logger.info(`Handling input from source '${source}' with action '${action}' in mode '${this.currentMode}'.`);
try {
switch (action) {
case "execsequence":
return await this.executeSequence(parameter);
case "execmovement":
return await this.setpoint(parameter);
case "entermaintenance":
return await this.executeSequence(parameter);
case "exitmaintenance":
return await this.executeSequence(parameter);
case "flowmovement":
// Calculate the control value for a desired flow
const pos = this.calcCtrl(parameter);
// Move to the desired setpoint
return await this.setpoint(pos);
case "emergencystop":
this.logger.warn(`Emergency stop activated by '${source}'.`);
return await this.executeSequence("emergencyStop");
case "statuscheck":
this.logger.info(`Status Check: Mode = '${this.currentMode}', Source = '${source}'.`);
break;
default:
this.logger.warn(`Action '${action}' is not implemented.`);
break;
}
this.logger.debug(`Action '${action}' successfully executed`);
return {status : true , feedback: `Action '${action}' successfully executed.`};
} catch (error) {
this.logger.error(`Error handling input: ${error}`);
}
}
abortMovement(reason = "group override") {
if (this.state?.abortCurrentMovement) {
this.state.abortCurrentMovement(reason);
}
}
setMode(newMode) {
const availableModes = this.defaultConfig.mode.current.rules.values.map(v => v.value);
if (!availableModes.includes(newMode)) {
this.logger.warn(`Invalid mode '${newMode}'. Allowed modes are: ${availableModes.join(', ')}`);
return;
}
this.currentMode = newMode;
this.logger.info(`Mode successfully changed to '${newMode}'.`);
}
// -------- Sequence Handlers -------- //
async executeSequence(sequenceName) {
const sequence = this.config.sequences[sequenceName];
if (!sequence || sequence.size === 0) {
this.logger.warn(`Sequence '${sequenceName}' not defined.`);
return;
}
if (this.state.getCurrentState() == "operational" && sequenceName == "shutdown") {
this.logger.info(`Machine will ramp down to position 0 before performing ${sequenceName} sequence`);
await this.setpoint(0);
}
this.logger.info(` --------- Executing sequence: ${sequenceName} -------------`);
for (const state of sequence) {
try {
await this.state.transitionToState(state);
// Update measurements after state change
} catch (error) {
this.logger.error(`Error during sequence '${sequenceName}': ${error}`);
break; // Exit sequence execution on error
}
}
//recalc flow and power
this.updatePosition();
}
async setpoint(setpoint) {
try {
// Validate setpoint
if (typeof setpoint !== 'number' || setpoint < 0) {
throw new Error("Invalid setpoint: Setpoint must be a non-negative number.");
}
this.logger.info(`Setting setpoint to ${setpoint}. Current position: ${this.state.getCurrentPosition()}`);
// Move to the desired setpoint
await this.state.moveTo(setpoint);
} catch (error) {
console.error(`Error setting setpoint: ${error}`);
}
}
// Calculate flow based on current pressure and position
calcFlow(x) {
if(this.hasCurve) {
if (!this._isOperationalState()) {
this.measurements.type("flow").variant("predicted").position("downstream").value(0);
this.logger.debug(`Machine is not operational. Setting predicted flow to 0.`);
return 0;
}
//this.predictFlow.currentX = x; Decrepated
const cFlow = this.predictFlow.y(x);
this.measurements.type("flow").variant("predicted").position("downstream").value(cFlow);
//this.logger.debug(`Calculated flow: ${cFlow} for pressure: ${this.getMeasuredPressure()} and position: ${x}`);
return cFlow;
}
// If no curve data is available, log a warning and return 0
this.logger.warn(`No curve data available for flow calculation. Returning 0.`);
this.measurements.type("flow").variant("predicted").position("downstream").value(0);
return 0;
}
// Calculate power based on current pressure and position
calcPower(x) {
if(this.hasCurve) {
if (!this._isOperationalState()) {
this.measurements.type("power").variant("predicted").position('atEquipment').value(0);
this.logger.debug(`Machine is not operational. Setting predicted power to 0.`);
return 0;
}
//this.predictPower.currentX = x; Decrepated
const cPower = this.predictPower.y(x);
this.measurements.type("power").variant("predicted").position('atEquipment').value(cPower);
//this.logger.debug(`Calculated power: ${cPower} for pressure: ${this.getMeasuredPressure()} and position: ${x}`);
return cPower;
}
// If no curve data is available, log a warning and return 0
this.logger.warn(`No curve data available for power calculation. Returning 0.`);
this.measurements.type("power").variant("predicted").position('atEquipment').value(0);
return 0;
}
// calculate the power consumption using only flow and pressure
inputFlowCalcPower(flow) {
if(this.hasCurve) {
this.predictCtrl.currentX = flow;
const cCtrl = this.predictCtrl.y(flow);
this.predictPower.currentX = cCtrl;
const cPower = this.predictPower.y(cCtrl);
return cPower;
}
// If no curve data is available, log a warning and return 0
this.logger.warn(`No curve data available for power calculation. Returning 0.`);
this.measurements.type("power").variant("predicted").position('atEquipment').value(0);
return 0;
}
// Function to predict control value for a desired flow
calcCtrl(x) {
if(this.hasCurve) {
this.predictCtrl.currentX = x;
const cCtrl = this.predictCtrl.y(x);
this.measurements.type("ctrl").variant("predicted").position('atEquipment').value(cCtrl);
//this.logger.debug(`Calculated ctrl: ${cCtrl} for pressure: ${this.getMeasuredPressure()} and position: ${x}`);
return cCtrl;
}
// If no curve data is available, log a warning and return 0
this.logger.warn(`No curve data available for control calculation. Returning 0.`);
this.measurements.type("ctrl").variant("predicted").position('atEquipment').value(0);
return 0;
}
// returns the best available pressure measurement to use in the prediction calculation
// this will be either the differential pressure, downstream or upstream pressure
getMeasuredPressure() {
const pressureDiff = this.measurements.type('pressure').variant('measured').difference();
// Both upstream & downstream => differential
if (pressureDiff) {
this.logger.debug(`Pressure differential: ${pressureDiff.value}`);
this.predictFlow.fDimension = pressureDiff.value;
this.predictPower.fDimension = pressureDiff.value;
this.predictCtrl.fDimension = pressureDiff.value;
//update the cog
const { cog, minEfficiency } = this.calcCog();
// calc efficiency
const efficiency = this.calcEfficiency(this.predictPower.outputY, this.predictFlow.outputY, "predicted");
//update the distance from peak
this.calcDistanceBEP(efficiency,cog,minEfficiency);
return pressureDiff.value;
}
// get downstream
const downstreamPressure = this.measurements.type('pressure').variant('measured').position('downstream').getCurrentValue();
// Only downstream => use it, warn that it's partial
if (downstreamPressure != null) {
this.logger.warn(`Using downstream pressure only for prediction: ${downstreamPressure} This is less acurate!!`);
this.predictFlow.fDimension = downstreamPressure;
this.predictPower.fDimension = downstreamPressure;
this.predictCtrl.fDimension = downstreamPressure;
//update the cog
const { cog, minEfficiency } = this.calcCog();
// calc efficiency
const efficiency = this.calcEfficiency(this.predictPower.outputY, this.predictFlow.outputY, "predicted");
//update the distance from peak
this.calcDistanceBEP(efficiency,cog,minEfficiency);
return downstreamPressure;
}
this.logger.error(`No valid pressure measurements available to calculate prediction using last known pressure`);
//set default at 0 => lowest pressure possible
this.predictFlow.fDimension = 0;
this.predictPower.fDimension = 0;
this.predictCtrl.fDimension = 0;
//update the cog
const { cog, minEfficiency } = this.calcCog();
// calc efficiency
const efficiency = this.calcEfficiency(this.predictPower.outputY, this.predictFlow.outputY, "predicted");
//update the distance from peak
this.calcDistanceBEP(efficiency,cog,minEfficiency);
return 0;
}
handleMeasuredFlow() {
const flowDiff = this.measurements.type('flow').variant('measured').difference();
// If both are present
if (flowDiff != null) {
// In theory, mass flow in = mass flow out, so they should match or be close.
if (flowDiff.value < 0.001) {
// flows match within tolerance
this.logger.debug(`Flow match: ${flowDiff.value}`);
return flowDiff.value;
} else {
// Mismatch => decide how to handle. Maybe take the average?
// Or bail out with an error. Example: we bail out here.
this.logger.error(`Something wrong with down or upstream flow measurement. Bailing out!`);
return null;
}
}
// get
const upstreamFlow = this.measurements.type('flow').variant('measured').position('upstream').getCurrentValue();
// Only upstream => might still accept it, but warn
if (upstreamFlow != null) {
this.logger.warn(`Only upstream flow is present. Using it but results may be incomplete!`);
return upstreamFlow;
}
// get
const downstreamFlow = this.measurements.type('flow').variant('measured').position('downstream').getCurrentValue();
// Only downstream => might still accept it, but warn
if (downstreamFlow != null) {
this.logger.warn(`Only downstream flow is present. Using it but results may be incomplete!`);
return downstreamFlow;
}
// Neither => error
this.logger.error(`No upstream or downstream flow measurement. Bailing out!`);
return null;
}
handleMeasuredPower() {
const power = this.measurements.type("power").variant("measured").position("atEquipment").getCurrentValue();
// If your system calls it "upstream" or just a single "value", adjust accordingly
if (power != null) {
this.logger.debug(`Measured power: ${power}`);
return power;
} else {
this.logger.error(`No measured power found. Bailing out!`);
return null;
}
}
// context handler for pressure updates
updateMeasuredPressure(value, position, context = {}) {
this.logger.debug(`Pressure update: ${value} at ${position} from ${context.childName || 'child'} (${context.childId || 'unknown-id'})`);
// Store in parent's measurement container
this.measurements.type("pressure").variant("measured").position(position).value(value, context.timestamp, context.unit);
// Determine what kind of value to use as pressure (upstream , downstream or difference)
const pressure = this.getMeasuredPressure();
this.updatePosition();
this.logger.debug(`Using pressure: ${pressure} for calculations`);
}
// NEW: Flow handler
updateMeasuredFlow(value, position, context = {}) {
if (!this._isOperationalState()) {
this.logger.warn(`Machine not operational, skipping flow update from ${context.childName || 'unknown'}`);
return;
}
this.logger.debug(`Flow update: ${value} at ${position} from ${context.childName || 'child'}`);
// Store in parent's measurement container
this.measurements.type("flow").variant("measured").position(position).value(value, context.timestamp, context.unit);
// Update predicted flow if you have prediction capability
if (this.predictFlow) {
this.measurements.type("flow").variant("predicted").position("downstream").value(this.predictFlow.outputY || 0);
}
}
// Helper method for operational state check
_isOperationalState() {
const state = this.state.getCurrentState();
this.logger.debug(`Checking operational state ${this.state.getCurrentState()} ? ${["operational", "accelerating", "decelerating"].includes(state)}`);
return ["operational", "accelerating", "decelerating"].includes(state);
}
//what is the internal functions that need updating when something changes that has influence on this.
updatePosition() {
if (this._isOperationalState()) {
const currentPosition = this.state.getCurrentPosition();
// Update the predicted values based on the new position
const { cPower, cFlow } = this.calcFlowPower(currentPosition);
// Calc predicted efficiency
const efficiency = this.calcEfficiency(cPower, cFlow, "predicted");
//update the cog
const { cog, minEfficiency } = this.calcCog();
//update the distance from peak
this.calcDistanceBEP(efficiency,cog,minEfficiency);
}
}
calcDistanceFromPeak(currentEfficiency,peakEfficiency){
return Math.abs(currentEfficiency - peakEfficiency);
}
calcRelativeDistanceFromPeak(currentEfficiency,maxEfficiency,minEfficiency){
let distance = 1;
if(currentEfficiency != null){
distance = this.interpolation.interpolate_lin_single_point(currentEfficiency,maxEfficiency, minEfficiency, 0, 1);
}
return distance;
}
showWorkingCurves() {
// Show the current curves for debugging
const { powerCurve, flowCurve } = this.getCurrentCurves();
return {
powerCurve: powerCurve,
flowCurve: flowCurve,
cog: this.cog,
cogIndex: this.cogIndex,
NCog: this.NCog,
minEfficiency: this.minEfficiency,
currentEfficiencyCurve: this.currentEfficiencyCurve,
absDistFromPeak: this.absDistFromPeak,
relDistFromPeak: this.relDistFromPeak
};
}
// Calculate the center of gravity for current pressure
calcCog() {
//fetch current curve data for power and flow
const { powerCurve, flowCurve } = this.getCurrentCurves();
const {efficiencyCurve, peak, peakIndex, minEfficiency } = this.calcEfficiencyCurve(powerCurve, flowCurve);
// Calculate the normalized center of gravity
const NCog = (flowCurve.y[peakIndex] - this.predictFlow.currentFxyYMin) / (this.predictFlow.currentFxyYMax - this.predictFlow.currentFxyYMin);
//store in object for later retrieval
this.currentEfficiencyCurve = efficiencyCurve;
this.cog = peak;
this.cogIndex = peakIndex;
this.NCog = NCog;
this.minEfficiency = minEfficiency;
return { cog: peak, cogIndex: peakIndex, NCog: NCog, minEfficiency: minEfficiency };
}
calcEfficiencyCurve(powerCurve, flowCurve) {
const efficiencyCurve = [];
let peak = 0;
let peakIndex = 0;
let minEfficiency = 0;
// Calculate efficiency curve based on power and flow curves
powerCurve.y.forEach((power, index) => {
// Get flow for the current power
const flow = flowCurve.y[index];
// higher efficiency is better
efficiencyCurve.push( Math.round( ( flow / power ) * 100 ) / 100);
// Keep track of peak efficiency
peak = Math.max(peak, efficiencyCurve[index]);
peakIndex = peak == efficiencyCurve[index] ? index : peakIndex;
minEfficiency = Math.min(...efficiencyCurve);
});
return { efficiencyCurve, peak, peakIndex, minEfficiency };
}
//calc flow power based on pressure and current position
calcFlowPower(x) {
// Calculate flow and power
const cFlow = this.calcFlow(x);
const cPower = this.calcPower(x);
return { cPower, cFlow };
}
calcEfficiency(power, flow, variant) {
if (power != 0 && flow != 0) {
// Calculate efficiency after measurements update
this.measurements.type("efficiency").variant(variant).position('atEquipment').value((flow / power));
} else {
this.measurements.type("efficiency").variant(variant).position('atEquipment').value(null);
}
return this.measurements.type("efficiency").variant(variant).position('atEquipment').getCurrentValue();
}
updateCurve(newCurve) {
this.logger.info(`Updating machine curve`);
const newConfig = { asset: { machineCurve: newCurve } };
//validate input of new curve fed to the machine
this.config = this.configUtils.updateConfig(this.config, newConfig);
//After we passed validation load the curves into their predictors
this.predictFlow.updateCurve(this.config.asset.machineCurve.nq);
this.predictPower.updateCurve(this.config.asset.machineCurve.np);
this.predictCtrl.updateCurve(this.reverseCurve(this.config.asset.machineCurve.nq));
}
getCompleteCurve() {
const powerCurve = this.predictPower.inputCurveData;
const flowCurve = this.predictFlow.inputCurveData;
return { powerCurve, flowCurve };
}
getCurrentCurves() {
const powerCurve = this.predictPower.currentFxyCurve[this.predictPower.currentF];
const flowCurve = this.predictFlow.currentFxyCurve[this.predictFlow.currentF];
return { powerCurve, flowCurve };
}
calcDistanceBEP(efficiency,maxEfficiency,minEfficiency) {
const absDistFromPeak = this.calcDistanceFromPeak(efficiency,maxEfficiency);
const relDistFromPeak = this.calcRelativeDistanceFromPeak(efficiency,maxEfficiency,minEfficiency);
//store internally
this.absDistFromPeak = absDistFromPeak ;
this.relDistFromPeak = relDistFromPeak;
return { absDistFromPeak: absDistFromPeak, relDistFromPeak: relDistFromPeak };
}
getOutput() {
// Improved output object generation
const output = {};
Object.entries(this.measurements.measurements).forEach(([type, variants]) => {
Object.entries(variants).forEach(([variant, positions]) => {
Object.entries(positions).forEach(([position, measurement]) => {
output[`${type}.${variant}.${position}`] = measurement.getCurrentValue();
});
});
});
//fill in the rest of the output object
output["state"] = this.state.getCurrentState();
output["runtime"] = this.state.getRunTimeHours();
output["ctrl"] = this.state.getCurrentPosition();
output["moveTimeleft"] = this.state.getMoveTimeLeft();
output["mode"] = this.currentMode;
output["cog"] = this.cog; // flow / power efficiency
output["NCog"] = this.NCog; // normalized cog
output["NCogPercent"] = Math.round(this.NCog * 100 * 100) / 100 ;
output["maintenanceTime"] = this.state.getMaintenanceTimeHours();
if(this.flowDrift != null){
const flowDrift = this.flowDrift;
output["flowNrmse"] = flowDrift.nrmse;
output["flowLongterNRMSD"] = flowDrift.longTermNRMSD;
output["flowImmediateLevel"] = flowDrift.immediateLevel;
output["flowLongTermLevel"] = flowDrift.longTermLevel;
}
//should this all go in the container of measurements?
output["effDistFromPeak"] = this.absDistFromPeak;
output["effRelDistFromPeak"] = this.relDistFromPeak;
//this.logger.debug(`Output: ${JSON.stringify(output)}`);
return output;
}
} // end of class
module.exports = Machine;
/*------------------- Testing -------------------*/
/*
curve = require('C:/Users/zn375/.node-red/public/fallbackData.json');
//import a child
const Child = require('../../measurement/src/specificClass');
console.log(`Creating child...`);
const PT1 = new Child(config={
general:{
name:"PT1",
logging:{
enabled:true,
logLevel:"debug",
},
},
functionality:{
softwareType:"measurement",
positionVsParent:"upstream",
},
asset:{
supplier:"Vega",
category:"sensor",
type:"pressure",
model:"Vegabar 82",
unit: "mbar"
},
});
const PT2 = new Child(config={
general:{
name:"PT2",
logging:{
enabled:true,
logLevel:"debug",
},
},
functionality:{
softwareType:"measurement",
positionVsParent:"upstream",
},
asset:{
supplier:"Vega",
category:"sensor",
type:"pressure",
model:"Vegabar 82",
unit: "mbar"
},
});
//create a machine
console.log(`Creating machine...`);
const machineConfig = {
general: {
name: "Hydrostal",
logging: {
enabled: true,
logLevel: "debug",
}
},
asset: {
supplier: "Hydrostal",
type: "pump",
category: "centrifugal",
model: "H05K-S03R+HGM1X-X280KO", // Ensure this field is present.
machineCurve: curve["machineCurves"]["Hydrostal"]["H05K-S03R+HGM1X-X280KO"],
}
}
const stateConfig = {
general: {
logging: {
enabled: true,
logLevel: "debug",
},
},
// Your custom config here (or leave empty for defaults)
movement: {
speed: 1,
},
time: {
starting: 2,
warmingup: 3,
stopping: 2,
coolingdown: 3,
},
};
const machine = new Machine(machineConfig, stateConfig);
//machine.logger.info(JSON.stringify(curve["machineCurves"]["Hydrostal"]["H05K-S03R+HGM1X-X280KO"]));
machine.logger.info(`Registering child...`);
machine.childRegistrationUtils.registerChild(PT1, "upstream");
machine.childRegistrationUtils.registerChild(PT2, "downstream");
//feed curve to the machine class
//machine.updateCurve(curve["machineCurves"]["Hydrostal"]["H05K-S03R+HGM1X-X280KO"]);
PT1.logger.info(`Enable sim...`);
PT1.toggleSimulation();
PT2.logger.info(`Enable sim...`);
PT2.toggleSimulation();
machine.getOutput();
//manual test
//machine.handleInput("parent", "execSequence", "startup");
machine.measurements.type("pressure").variant("measured").position('upstream').value(-200);
machine.measurements.type("pressure").variant("measured").position('downstream').value(1000);
testingSequences();
const tickLoop = setInterval(changeInput,1000);
function changeInput(){
PT1.logger.info(`tick...`);
PT1.tick();
PT2.tick();
}
async function testingSequences(){
try{
console.log(` ********** Testing sequence startup... **********`);
await machine.handleInput("parent", "execSequence", "startup");
console.log(` ********** Testing movement to 15... **********`);
await machine.handleInput("parent", "execMovement", 15);
machine.getOutput();
console.log(` ********** Testing sequence shutdown... **********`);
await machine.handleInput("parent", "execSequence", "shutdown");
console.log(`********** Testing moving to setpoint 10... while in idle **********`);
await machine.handleInput("parent", "execMovement", 10);
console.log(` ********** Testing sequence emergencyStop... **********`);
await machine.handleInput("parent", "execSequence", "emergencystop");
console.log(`********** Testing sequence boot... **********`);
await machine.handleInput("parent", "execSequence", "boot");
}catch(error){
console.error(`Error: ${error}`);
}
}
//*/