Files
machineGroupControl/dependencies/ggc/ggc.js
znetsixe 33a62674c6 update
2025-05-26 17:43:20 +02:00

527 lines
19 KiB
JavaScript

/**
* @file gate.js
*
* Permission is hereby granted to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to use it for personal
* or non-commercial purposes, with the following restrictions:
*
* 1. **No Copying or Redistribution**: The Software or any of its parts may not
* be copied, merged, distributed, sublicensed, or sold without explicit
* prior written permission from the author.
*
* 2. **Commercial Use**: Any use of the Software for commercial purposes requires
* a valid license, obtainable only with the explicit consent of the author.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT, OR OTHERWISE, ARISING FROM,
* OUT OF, OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Ownership of this code remains solely with the original author. Unauthorized
* use of this Software is strictly prohibited.
*
* @summary A class to interact and manipulate machines with a non-euclidian curve
* @description A class to interact and manipulate machines with a non-euclidian curve
* @module ggc
* @exports ggc
* @version 2.0.0
* @since 0.1.0
*
* Author:
* - Rene De Ren
* Email:
* - rene@thegoldenbasket.nl
*
*/
//load local dependencies
const EventEmitter = require('events');
const Logger = require('../../../generalFunctions/helper/logger');
const { MeasurementContainer } = require('../../../generalFunctions/helper/measurements/index');
const Interpolation = require('../../../predict/dependencies/predict/interpolation');
//load all config modules
const defaultConfig = require('./ggcConfig.json');
const ConfigUtils = require('../../../generalFunctions/helper/configUtils');
//load registration utility
const ChildRegistrationUtils = require('../../../generalFunctions/helper/childRegistrationUtils');
class Ggc {
/*------------------- Construct and set vars -------------------*/
constructor(ggcConfig = {}) {
//basic setup
this.emitter = new EventEmitter(); // Own EventEmitter
this.configUtils = new ConfigUtils(defaultConfig);
this.config = this.configUtils.initConfig(ggcConfig);
// Initialize measurements
this.measurements = new MeasurementContainer();
this.interpolation = new Interpolation();
this.child = {}; // object to hold child
this.actuators = []; // object to hold actuators
this.abortController = null; // new abort controller for aborting async tasks
// Init after config is set
this.logger = new Logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, this.config.general.name);
this.mode = this.config.mode.current;
this.move_delay = this.config.settings.moveDelay ; //define opening delay in seconds between 2 gates
this.state = "gateGroupClosed"; //define default starting state of the gates
//auto close
this.autoClose = true;
this.autoCloseTime = this.config.settings.autoClose;
this.autoCloseCnt = 0;
//protection sensor
this.safetySensor = false;
this.retryDelay = this.config.settings.retryDelay; // in seconds
this.closeAttempt = 0;
this.maxCloseAttempts = this.config.settings.maxRetries ;
this.safetySensorCnt = 0;
//ground loop trigger
this.ground_loop = false;
this.ground_loop_start = Date.now();
this.ground_loop_open = 10; //define time in seconds for when the ground loop should trigger a respons
//define if something has gone through the gate
this.goneThrough = false;
//define if the gate is closed
this.checkGateClosed = [false, false]; // gate 1 and gate 2
/* time controlled functions*/
//this.sleep = ms => new Promise(res => setTimeout(res, ms));
this.childRegistrationUtils = new ChildRegistrationUtils(this); // Child registration utility
}
isValidSourceForMode(source, mode) {
const allowedSourcesSet = this.config.mode.allowedSources[mode] || [];
return allowedSourcesSet.has(source);
}
isValidActionForMode(action, mode) {
const allowedActionsSet = this.config.mode.allowedActions[mode] || [];
return allowedActionsSet.has(action);
}
sleep(ms, signal) {
return new Promise((resolve, reject) => {
const timer = setTimeout(resolve, ms);
// only attach abort listener if a valid signal is provided
if (signal && typeof signal.addEventListener === 'function') {
signal.addEventListener('abort', () => {
clearTimeout(timer);
reject(new Error('aborted'));
});
}
});
}
// -------- Sequence Handlers -------- //
async executeSequence(name) {
const sequence = this.config.sequences[name];
const positions = this.actuators.map(a => a.state.getCurrentPosition());
const states = this.actuators.map(a => a.state.getCurrentState());
if (!sequence || sequence.size === 0) {
this.logger.warn(`Sequence '${name}' not defined.`);
return;
}
// Abort any prior sequence and start fresh
this.abortController?.abort();
this.abortController = new AbortController();
const { signal } = this.abortController;
if ( states.some(s => s !== "operational") && name !== "stop2gates" ) {
this.logger.warn(`Actuators not operational, aborting sequence '${name}'.`);
this.handleInput("parent", "execSequence", "stop2gates");
this.sleep(1000).then(() => {
this.handleInput("parent", "execSequence", name);
});
return;
}
try {
for (const action of sequence) {
this.transitionToSequence(action);
//If someone has already called abort(), skip the delay
if (signal.aborted) {
continue;
}
//otherwise, wait for the delay
await this.sleep(this.move_delay * 1000, signal);
}
} catch (err) {
if (err.message === 'aborted') {
this.logger.debug(`Sequence '${name}' aborted mid-delay.`);
} else {
this.logger.error(`Error in sequence '${name}': ${err.stack}`);
}
} finally {
// Clean up so we know no sequence is running
this.abortController = null;
}
}
async transitionToSequence(action) {
this.logger.debug(`Executing action: ${action}`);
const positions = this.actuators.map(a => a.state.getCurrentPosition());
const states = this.actuators.map(a => a.state.getCurrentState());
// Perform actions based on the state
switch (action) {
case "openGate1":
this.logger.debug("Opening gate 1");
this.actuators[0].handleInput("parent", "execMovement", 100);
this.checkGateClosed[0] = false;
break;
case "openGate2":
this.logger.debug("Opening gate 2");
this.actuators[1].handleInput("parent", "execMovement", 100);
break;
case "stopGate1":
this.logger.debug("Stopping gate 1");
// abort the delayed sleep, if any
this.abortController?.abort();
// immediately stop actuator 1
this.actuators[0].stop();
break;
case "stopGate2":
this.logger.debug("Stopping gate 2");
// abort the delayed sleep, if any
this.abortController?.abort();
// immediately stop actuator 2
this.actuators[1].stop();
break;
case "closeGate1":
this.actuators[0].handleInput("parent", "execMovement", 0);
break;
case "closeGate2":
this.actuators[1].handleInput("parent", "execMovement", 0);
break;
default:
this.logger.warn(`Unknown state: ${state}`);
}
}
async handleInput(source, action, parameter) {
if (!this.isValidSourceForMode(source, this.mode)) {
this.logger.warn(`Invalid source ${source} for mode ${this.mode}`);
return;
}
if (!this.isValidActionForMode(action, this.mode)) {
this.logger.warn(`Invalid action ${action} for mode ${this.mode}`);
return;
}
switch (action) {
case 'execSequence':
this.executeSequence(parameter);
break;
case 'setMode':
this.setMode(parameter);
break;
default:
this.logger.warn(`Unknown action ${action}`);
}
}
groundLoopAction(){
if(this.ground_loop){
//keep track of time
this.ground_loop_time = Date.now() - this.ground_loop_trigger;
}
else{
this.ground_loop_time = 0;
}
if(this.ground_loop_time >= ( this.ground_loop_open * 1000) ){
this.openGates();
}
}
updateMeasurement(variant, subType, value, position) {
this.logger.debug(`---------------------- updating ${subType} ------------------ `);
switch (subType) {
case "power":
// Update power measurement
this.updatePower(variant, value, position);
break;
default:
this.logger.error(`Type '${type}' not recognized for measured update.`);
return;
}
}
updatePower(variant,value,position) {
switch (variant) {
case ("measured"):
// put value in measurements
this.measurements.type("power").variant(variant).position("wire").value(value);
this.eventUpdate();
this.logger.debug(`Measured: ${value}`);
break;
default:
this.logger.warn(`Unrecognized variant '${variant}' for update.`);
break;
}
}
eventUpdate() {
// Gather raw data in arrays
const positions = this.actuators.map(a => a.state.getCurrentPosition());
const states = this.actuators.map(a => a.state.getCurrentState());
this.logger.debug(`States: ${JSON.stringify(states)}`);
this.logger.debug(`Positions: ${JSON.stringify(positions)}`);
const totPower = this.measurements.type("power").variant("measured").position("wire").getCurrentValue();
// Utility flags
const allOperational = states.every(s => s === "operational");
const allAtOpen = positions.every(p => p === 100);
const allAtClosed = positions.every(p => p === 0);
const allAccelerating = states.every(s => s === "accelerating");
const allDecelerating = states.every(s => s === "decelerating");
const allStopped = states.every(s => s === "operational") && positions.every( p => p !== 0 && p != 100);
const onlyGateOneAccelerating = states[0] === "accelerating" && states[1] === "operational";
const onlyGateTwoAccelerating = states[1] === "accelerating" && states[0] === "operational";
const onlyGateOneDecelerating = states[0] === "decelerating" && states[1] === "operational";
const onlyGateTwoDecelerating = states[1] === "decelerating" && states[0] === "operational";
const oneOpenOneClosed = allOperational && positions.some(p => p === 0) && positions.some(p => p === 100);
// Threshold for “spike” detection (tune as needed)
const SPIKE_THRESHOLD_1gate = 50;
const SPIKE_THRESHOLD_2gates = 100;
const lowerPositionThreshold = 10; // 10% of the total range
const upperPositionThreshold = 90; // 90% of the total range
// When something is blocking the gate we need to reopen the gates (True means nothing is blocking)
if (!this.safetySensor) {
// always add 1 to the safety sensor counter
this.safetySensorCnt++;
//add 1 to the autoclose counter to check weither we dont exceedd the max retries
if(this.autoClose) {
this.autoCloseCnt++;
}
//check if the safety sensor is triggered and the gates are closing
if( allDecelerating || onlyGateOneDecelerating || onlyGateTwoDecelerating) {
this.closeAttempt++;
this.handleInput("parent", "execSequence", "stop2gates");
this.logger.debug("something is blocking the gate, stopping actuators");
this.sleep(1000).then(() => {
this.handleInput("parent", "execSequence", "open2gates");
});
}
}
// Detect if any single gate is decelerating into its stop
if( onlyGateOneDecelerating ) {
//check for power spike so we know the gate is closed
if ( totPower > SPIKE_THRESHOLD_1gate ) {
this.logger.debug("Gate 1 is decelerating into the stop (power spike)");
//check flag for knowing if the gate is closed
this.checkGateClosed[0] = true;
this.closeAttempt = 0;
}
}
if( allDecelerating || allAccelerating) {
if( totPower > SPIKE_THRESHOLD_2gates && ( positions.some(p => p > lowerPositionThreshold) || positions.some(p => p < upperPositionThreshold) ) ) {
this.logger.debug("Unexpected power spike detected");
// stop the actuators
this.handleInput("parent", "execSequence", "stop2gates");
}
}
// Decide group state
if (allAtOpen && allOperational) {
this.state = "gateGroupOpened";
//trigger auto close if count is smaller than max
if( this.autoClose && this.autoCloseCnt < this.maxCloseAttempts && this.safetySensorCnt > 0) {
this.sleep(this.autoCloseTime * 1000).then(() => {
this.handleInput("parent", "execSequence", "close2gates");
//reset the safetySensor count because we are automatically closing the gates and if its bigger than 0 it means some1 passed through it
this.safetySensorCnt = 0;
});
}
this.logger.debug("Gates are open");
}
else if (allAtClosed && allOperational) {
this.state = "gateGroupClosed";
//after everything was closed and the auto close is enabled we need to reset the auto close count
if(this.autoClose) {
this.autoCloseCnt = 0;
};
this.logger.debug("Gates are closed");
}
else if (oneOpenOneClosed) {
this.state = "oneGateOpenOneGateClosed";
this.logger.debug("One gate open, one gate closed");
}
else if (allAccelerating) {
this.state = "gateGroupAccelerating";
this.logger.debug("Gates are accelerating");
}
else if (onlyGateOneAccelerating) {
this.state = "gateOneAccelerating";
this.logger.debug("Only gate 1 is accelerating");
}
else if (onlyGateTwoAccelerating) {
this.state = "gateTwoAccelerating";
this.logger.debug("Only gate 2 is accelerating");
}
else if (allDecelerating) {
this.state = "gateGroupDecelerating";
this.logger.debug("Gates are decelerating");
}
else if (onlyGateOneDecelerating) {
this.state = "gateOneDecelerating";
this.logger.debug("Only gate 1 is decelerating");
}
else if (onlyGateTwoDecelerating) {
this.state = "gateTwoDecelerating";
this.logger.debug("Only gate 2 is decelerating");
}
else if (allStopped) {
this.state = "gateGroupStopped";
this.logger.debug("Gates are stopped");
}
else {
this.state = "unknown";
this.logger.warn(`Unhandled combination: positions=${positions}, states=${states}`);
}
// if the gates are operational and close but we dont see the truely closed state then we need to nudge the gate to force the close
}
getOutput() {
// Improved output object generation
const output = {};
//build the output object
this.measurements.getTypes().forEach(type => {
this.measurements.getVariants(type).forEach(variant => {
const downstreamVal = this.measurements.type(type).variant(variant).position("downstream").getCurrentValue();
const upstreamVal = this.measurements.type(type).variant(variant).position("upstream").getCurrentValue();
if (downstreamVal != null) {
output[`downstream_${variant}_${type}`] = downstreamVal;
}
if (upstreamVal != null) {
output[`upstream_${variant}_${type}`] = upstreamVal;
}
if (downstreamVal != null && upstreamVal != null) {
const diffVal = this.measurements.type(type).variant(variant).difference().value;
output[`differential_${variant}_${type}`] = diffVal;
}
});
});
//fill in the rest of the output object
output["mode"] = this.mode;
output["totPower"] = this.power;
//this.logger.debug(`Output: ${JSON.stringify(output)}`);
return output;
}
} // end of class
module.exports = Ggc;
/*
const ggcConfig = {
general: {
name: "TestGGC",
logging: {
enabled: true,
logLevel: "debug"
}
},
settings: {
moveDelay: 3,
autoClose: 5,
retryDelay: 10,
maxRetries: 5
}
};
const ggc = new Ggc(ggcConfig);
const linearActuator = require('../../../linearActuator/dependencies/linearActuator/linearActuator');
const linActConfig =
{
general: {
logging: {
enabled: true,
logLevel: "debug",
}
},
settings: {
moveDelay: 3,
autoClose: 5,
retryDelay: 10,
maxRetries: 5
}
};
const stateConfig = {
general: {
logging: {
enabled: true,
logLevel: "debug"
}
},
movement: {
speed: 0.1,
mode: "staticspeed"
},
time: {
starting: 0,
warmingup: 0,
stopping: 0,
coolingdown: 0
}
};
const gate1 = new linearActuator(linActConfig,stateConfig);
const gate2 = new linearActuator(linActConfig,stateConfig);
ggc.childRegistrationUtils.registerChild(gate1,"upstream");
ggc.childRegistrationUtils.registerChild(gate2,"downstream");
//open completely 2 gates inside an async IIFE
(async () => {
await ggc.actuators[0].handleInput("parent","execSequence","startup");
await ggc.actuators[1].handleInput("parent","execSequence","startup");
ggc.handleInput("parent","execSequence","open2gates");
await ggc.sleep(5000);
ggc.handleInput("parent","execSequence","stop2gates");
})();
//*/