This commit is contained in:
znetsixe
2025-11-25 15:10:36 +01:00
parent b49f0c3ed2
commit f4cb329597
2 changed files with 353 additions and 314 deletions

View File

@@ -1,288 +1,345 @@
// ...existing code... 'use strict';
const MachineGroup = require('./specificClass.js');
const MachineGroup = require('./specificClass');
const Machine = require('../../rotatingMachine/src/specificClass'); const Machine = require('../../rotatingMachine/src/specificClass');
const Measurement = require('../../measurement/src/specificClass'); const Measurement = require('../../measurement/src/specificClass');
const specs = require('../../generalFunctions/datasets/assetData/curves/hidrostal-H05K-S03R.json'); const baseCurve = require('../../generalFunctions/datasets/assetData/curves/hidrostal-H05K-S03R.json');
const stateConfig = { time:{starting:0,warmingup:0,stopping:0,coolingdown:0}, movement:{speed:1000,mode:"staticspeed"} }; const CONTROL_MODES = ['optimalcontrol', 'prioritycontrol', 'prioritypercentagecontrol'];
const ptConfig = { const MODE_LABELS = {
general:{ logging:{enabled:false,logLevel:"warn"}, name:"testpt", id:"pt-1", unit:"mbar" }, optimalcontrol: 'OPT',
functionality:{ softwareType:"measurement", role:"sensor" }, prioritycontrol: 'PRIO',
asset:{ category:"sensor", type:"pressure", model:"testmodel", supplier:"vega", unit:"mbar" }, prioritypercentagecontrol: 'PERC'
scaling:{ absMin:0, absMax:4000 }
}; };
const testSuite = []; const stateConfig = {
const efficiencyComparisons = []; time: { starting: 0, warmingup: 0, stopping: 0, coolingdown: 0, emergencystop: 0 },
movement: { speed: 1200, mode: 'staticspeed', maxSpeed: 1800 }
};
function logPass(name, details="") { const ptConfig = {
const entry = { name, status:"PASS", details }; general: { logging: { enabled: false, logLevel: 'error' }, name: 'synthetic-pt', id: 'pt-1', unit: 'mbar' },
testSuite.push(entry); functionality: {
console.log(`${name}${details ? `${details}` : ""}`); softwareType: 'measurement',
} role: 'sensor',
function logFail(name, error) { positionVsParent: 'downstream'
const entry = { name, status:"FAIL", details:error?.message || error }; },
testSuite.push(entry); asset: { category: 'sensor', type: 'pressure', model: 'synthetic-pt', supplier: 'lab', unit: 'mbar' },
console.error(`${name}${entry.details}`); scaling: { absMin: 0, absMax: 4000 }
} };
function approxEqual(actual, expected, tolerancePct=1) {
const tolerance = (expected * tolerancePct) / 100;
return actual >= expected - tolerance && actual <= expected + tolerance;
}
async function sleep(ms){ return new Promise(resolve => setTimeout(resolve, ms)); }
function createMachineConfig(id,label) { const scenarios = [
{
name: 'balanced_pair',
description: 'Two identical pumps validate equal-machine behaviour.',
machines: [
{ id: 'eq-1', label: 'equal-A', curveMods: { flowScale: 1, powerScale: 1 } },
{ id: 'eq-2', label: 'equal-B', curveMods: { flowScale: 1, powerScale: 1 } }
],
pressures: [900, 1300, 1700],
flowTargetsPercent: [0.1, 0.4, 0.7, 1],
flowMatchTolerance: 5,
priorityList: ['eq-1', 'eq-2']
},
{
name: 'mixed_trio',
description: 'High / mid / low efficiency pumps to stress unequal-machine behaviour.',
machines: [
{ id: 'hi', label: 'high-eff', curveMods: { flowScale: 1.25, powerScale: 0.82, flowTilt: 0.1, powerTilt: -0.05 } },
{ id: 'mid', label: 'mid-eff', curveMods: { flowScale: 1, powerScale: 1 } },
{ id: 'low', label: 'low-eff', curveMods: { flowScale: 0.7, powerScale: 1.35, flowTilt: -0.08, powerTilt: 0.15 } }
],
pressures: [800, 1200, 1600, 2000],
flowTargetsPercent: [0.1, 0.35, 0.7, 1],
flowMatchTolerance: 8,
priorityList: ['hi', 'mid', 'low']
}
];
function createGroupConfig(name) {
return { return {
general:{ logging:{enabled:false,logLevel:"warn"}, name:label, id, unit:"m3/h" }, general: { logging: { enabled: false, logLevel: 'error' }, name: `machinegroup-${name}` },
functionality:{ softwareType:"machine", role:"rotationaldevicecontroller" }, functionality: { softwareType: 'machinegroup', role: 'groupcontroller' },
asset:{ category:"pump", type:"centrifugal", model:"hidrostal-h05k-s03r", supplier:"hydrostal", machineCurve:specs }, scaling: { current: 'normalized' },
mode:{ mode: { current: 'optimalcontrol' }
current:"auto", };
allowedActions:{ }
auto:["execSequence","execMovement","flowMovement","statusCheck"],
virtualControl:["execMovement","statusCheck"], function sleep(ms) {
fysicalControl:["statusCheck"] return new Promise(resolve => setTimeout(resolve, ms));
}
async function setPressure(pt, value) {
const retries = 6;
for (let attempt = 0; attempt < retries; attempt += 1) {
try {
pt.calculateInput(value);
return;
} catch (error) {
const message = error?.message || String(error);
if (!message.toLowerCase().includes('coolprop is still warming up')) {
throw error;
}
await sleep(50);
}
}
throw new Error(`Unable to update pressure to ${value} mbar; CoolProp did not initialise in time.`);
}
function deepClone(obj) {
return JSON.parse(JSON.stringify(obj));
}
function distortSeries(series = [], scale = 1, tilt = 0) {
if (!Array.isArray(series) || series.length === 0) {
return series;
}
const lastIndex = series.length - 1;
return series.map((value, index) => {
const gradient = lastIndex === 0 ? 0 : index / lastIndex - 0.5;
const distorted = value * scale * (1 + tilt * gradient);
return Number(Math.max(distorted, 0).toFixed(6));
});
}
function createSyntheticCurve(mods = {}) {
const { flowScale = 1, powerScale = 1, flowTilt = 0, powerTilt = 0 } = mods;
const curve = deepClone(baseCurve);
if (curve.nq) {
Object.values(curve.nq).forEach(set => {
set.y = distortSeries(set.y, flowScale, flowTilt);
});
}
if (curve.np) {
Object.values(curve.np).forEach(set => {
set.y = distortSeries(set.y, powerScale, powerTilt);
});
}
return curve;
}
function createMachineConfig(id, label) {
return {
general: { logging: { enabled: false, logLevel: 'error' }, name: label, id, unit: 'm3/h' },
functionality: { softwareType: 'machine', role: 'rotationaldevicecontroller' },
asset: { category: 'pump', type: 'centrifugal', model: 'hidrostal-h05k-s03r', supplier: 'hidrostal', machineCurve: baseCurve },
mode: {
current: 'auto',
allowedActions: {
auto: ['execsequence', 'execmovement', 'flowmovement', 'statuscheck'],
virtualControl: ['execmovement', 'statuscheck'],
fysicalControl: ['statuscheck']
}, },
allowedSources:{ allowedSources: {
auto:["parent","GUI"], auto: ['parent', 'GUI'],
virtualControl:["GUI"], virtualControl: ['GUI'],
fysicalControl:["fysical"] fysicalControl: ['fysical']
} }
}, },
sequences:{ sequences: {
startup:["starting","warmingup","operational"], startup: ['starting', 'warmingup', 'operational'],
shutdown:["stopping","coolingdown","idle"], shutdown: ['stopping', 'coolingdown', 'idle'],
emergencystop:["emergencystop","off"], emergencystop: ['emergencystop', 'off'],
boot:["idle","starting","warmingup","operational"] boot: ['idle', 'starting', 'warmingup', 'operational']
} }
}; };
} }
async function bootstrapGroup() { async function bootstrapScenarioMachines(scenario) {
const groupCfg = { const mg = new MachineGroup(createGroupConfig(scenario.name));
general:{ logging:{enabled:false,logLevel:"warn"}, name:"testmachinegroup" },
functionality:{ softwareType:"machinegroup", role:"groupcontroller" },
scaling:{ current:"normalized" },
mode:{ current:"optimalcontrol" }
};
const mg = new MachineGroup(groupCfg);
const pt = new Measurement(ptConfig); const pt = new Measurement(ptConfig);
for (let idx=1; idx<=2; idx++){ for (const machineDef of scenario.machines) {
const machine = new Machine(createMachineConfig(String(idx),`machine-${idx}`), stateConfig); const machine = new Machine(createMachineConfig(machineDef.id, machineDef.label), stateConfig);
mg.childRegistrationUtils.registerChild(machine,"downstream"); if (machineDef.curveMods) {
machine.childRegistrationUtils.registerChild(pt,"downstream"); machine.updateCurve(createSyntheticCurve(machineDef.curveMods));
}
mg.childRegistrationUtils.registerChild(machine, 'downstream');
machine.childRegistrationUtils.registerChild(pt, 'downstream');
} }
pt.calculateInput(1000);
await sleep(10); await sleep(25);
return { mg, pt }; return { mg, pt };
} }
function captureState(mg,label){ function captureTotals(mg) {
return { const flow = mg.measurements.type('flow').variant('predicted').position('atequipment').getCurrentValue() || 0;
label, const power = mg.measurements.type('power').variant('predicted').position('atequipment').getCurrentValue() || 0;
machines: Object.entries(mg.machines).map(([id,machine]) => ({ const efficiency = mg.measurements.type('efficiency').variant('predicted').position('atequipment').getCurrentValue() || 0;
id, return { flow, power, efficiency };
state: machine.state.getCurrentState(),
position: machine.state.getCurrentPosition(),
predictedFlow: machine.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0,
predictedPower: machine.measurements.type("power").variant("predicted").position("upstream").getCurrentValue() || 0
})),
totals: {
flow: mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0,
power: mg.measurements.type("power").variant("predicted").position("upstream").getCurrentValue() || 0,
efficiency: mg.measurements.type("efficiency").variant("predicted").position("downstream").getCurrentValue() || 0
}
};
} }
async function testNormalizedScaling(mg,pt){ function computeAbsoluteTargets(dynamicTotals, percentages) {
const label = "Normalized scaling tracks expected flow"; const { flow } = dynamicTotals;
try{ const min = Number.isFinite(flow.min) ? flow.min : 0;
mg.setScaling("normalized"); const max = Number.isFinite(flow.max) ? flow.max : 0;
const dynamic = mg.calcDynamicTotals(); const span = Math.max(max - min, 1);
const checkpoints = [0,10,25,50,75,100]; return percentages.map(percent => {
for (const demand of checkpoints){ const pct = Math.max(0, Math.min(1, percent));
await mg.handleInput("parent", demand); return min + pct * span;
pt.calculateInput(1400); });
await sleep(20);
const totals = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
const expected = dynamic.flow.min + (demand/100)*(dynamic.flow.max - dynamic.flow.min);
if(!approxEqual(totals, expected, 2)){
throw new Error(`Flow ${totals.toFixed(2)} outside expectation ${expected.toFixed(2)} @ ${demand}%`);
}
}
logPass(label);
}catch(err){ logFail(label, err); }
} }
async function testAbsoluteScaling(mg,pt){ async function driveModeToFlow({ mg, pt, mode, pressure, targetFlow, priorityOrder }) {
const label = "Absolute scaling accepts direct flow targets"; await setPressure(pt, pressure);
try{ await sleep(15);
mg.setScaling("absolute");
mg.setMode("optimalcontrol");
const absMin = mg.dynamicTotals.flow.min;
const absMax = mg.dynamicTotals.flow.max;
const demandPoints = [absMin, absMin+20, (absMin+absMax)/2, absMax-20];
for(const setpoint of demandPoints){ mg.setMode(mode);
await mg.handleInput("parent", setpoint); mg.setScaling('normalized'); // required for prioritypercentagecontrol, works for others too
pt.calculateInput(1400);
await sleep(20); const dynamic = mg.calcDynamicTotals();
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0; const span = Math.max(dynamic.flow.max - dynamic.flow.min, 1);
if(!approxEqual(flow, setpoint, 2)){ const normalizedTarget = ((targetFlow - dynamic.flow.min) / span) * 100;
throw new Error(`Flow ${flow.toFixed(2)} != demand ${setpoint.toFixed(2)}`);
} let low = 0;
let high = 100;
let demand = Math.max(0, Math.min(100, normalizedTarget || 0));
let best = { demand, flow: 0, power: 0, efficiency: 0, error: Infinity };
for (let attempt = 0; attempt < 4; attempt += 1) {
await mg.handleInput('parent', demand, Infinity, priorityOrder);
await sleep(30);
const totals = captureTotals(mg);
const error = Math.abs(totals.flow - targetFlow);
if (error < best.error) {
best = {
demand,
flow: totals.flow,
power: totals.power,
efficiency: totals.efficiency,
error
};
} }
logPass(label);
}catch(err){ logFail(label, err); } if (totals.flow > targetFlow) {
high = demand;
} else {
low = demand;
}
demand = (low + high) / 2;
}
return best;
} }
async function testModeTransitions(mg,pt){ function formatEfficiencyRows(rows) {
const label = "Mode transitions keep machines responsive"; return rows.map(row => {
try{ const optimal = row.modes.optimalcontrol;
const modes = ["optimalcontrol","prioritycontrol","prioritypercentagecontrol"]; const priority = row.modes.prioritycontrol;
mg.setScaling("normalized"); const percentage = row.modes.prioritypercentagecontrol;
for(const mode of modes){ return {
mg.setMode(mode); pressure: row.pressure,
await mg.handleInput("parent", 50); targetFlow: Number(row.targetFlow.toFixed(1)),
pt.calculateInput(1300); [`${MODE_LABELS.optimalcontrol}_Flow`]: Number(optimal.flow.toFixed(1)),
await sleep(20); [`${MODE_LABELS.optimalcontrol}_Eff`]: Number(optimal.efficiency.toFixed(3)),
const snapshot = captureState(mg, mode); [`${MODE_LABELS.prioritycontrol}_Flow`]: Number(priority.flow.toFixed(1)),
const active = snapshot.machines.filter(m => m.state !== "idle"); [`${MODE_LABELS.prioritycontrol}_Eff`]: Number(priority.efficiency.toFixed(3)),
if(active.length === 0){ [`Δ${MODE_LABELS.prioritycontrol}-OPT_Eff`]: Number(
throw new Error(`No active machines after switching to ${mode}`); (priority.efficiency - optimal.efficiency).toFixed(3)
} ),
} [`${MODE_LABELS.prioritypercentagecontrol}_Flow`]: Number(percentage.flow.toFixed(1)),
logPass(label); [`${MODE_LABELS.prioritypercentagecontrol}_Eff`]: Number(percentage.efficiency.toFixed(3)),
}catch(err){ logFail(label, err); } [`Δ${MODE_LABELS.prioritypercentagecontrol}-OPT_Eff`]: Number(
(percentage.efficiency - optimal.efficiency).toFixed(3)
)
};
});
} }
async function testRampBehaviour(mg,pt){ function summarizeEfficiency(rows) {
const label = "Ramp up/down keeps monotonic flow"; const map = new Map();
try{ rows.forEach(row => {
mg.setMode("optimalcontrol"); CONTROL_MODES.forEach(mode => {
mg.setScaling("normalized"); const key = `${row.scenario}-${mode}`;
const upDemands = [0,20,40,60,80,100]; if (!map.has(key)) {
let lastFlow = 0; map.set(key, {
for(const demand of upDemands){ scenario: row.scenario,
await mg.handleInput("parent", demand); mode,
pt.calculateInput(1500); samples: 0,
await sleep(15); avgFlowDiff: 0,
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0; avgEfficiency: 0
if(flow < lastFlow - 1){
throw new Error(`Flow decreased during ramp up: ${flow.toFixed(2)} < ${lastFlow.toFixed(2)}`);
}
lastFlow = flow;
}
const downDemands = [100,80,60,40,20,0];
lastFlow = Infinity;
for(const demand of downDemands){
await mg.handleInput("parent", demand);
pt.calculateInput(1200);
await sleep(15);
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
if(flow > lastFlow + 1){
throw new Error(`Flow increased during ramp down: ${flow.toFixed(2)} > ${lastFlow.toFixed(2)}`);
}
lastFlow = flow;
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function testPressureAdaptation(mg,pt){
const label = "Pressure changes update predictions";
try{
mg.setMode("optimalcontrol");
mg.setScaling("normalized");
const pressures = [800,1200,1600,2000];
let previousFlow = null;
for(const p of pressures){
pt.calculateInput(p);
await mg.handleInput("parent", 50);
await sleep(20);
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
if(previousFlow !== null && Math.abs(flow - previousFlow) < 0.5){
throw new Error(`Flow did not react to pressure shift (${previousFlow.toFixed(2)} -> ${flow.toFixed(2)})`);
}
previousFlow = flow;
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function comparePriorityVsOptimal(mg, pt){
const label = "Priority vs Optimal efficiency comparison";
try{
mg.setScaling("normalized");
const pressures = [800, 1100, 1400, 1700];
const demands = [...Array(21)].map((_, idx) => idx * 5);
for (const pressure of pressures) {
pt.calculateInput(pressure);
await sleep(15);
for (const demand of demands) {
mg.setMode("optimalcontrol");
await mg.handleInput("parent", demand);
pt.calculateInput(pressure);
await sleep(20);
const optimalTotals = captureState(mg, `optimal-${pressure}-${demand}`).totals;
mg.setMode("prioritycontrol");
await mg.handleInput("parent", demand);
pt.calculateInput(pressure);
await sleep(20);
const priorityTotals = captureState(mg, `priority-${pressure}-${demand}`).totals;
efficiencyComparisons.push({
pressure,
demandPercent: demand,
optimalFlow: Number(optimalTotals.flow.toFixed(3)),
optimalPower: Number(optimalTotals.power.toFixed(3)),
optimalEfficiency: Number((optimalTotals.efficiency || 0).toFixed(4)),
priorityFlow: Number(priorityTotals.flow.toFixed(3)),
priorityPower: Number(priorityTotals.power.toFixed(3)),
priorityEfficiency: Number((priorityTotals.efficiency || 0).toFixed(4)),
efficiencyDelta: Number(((priorityTotals.efficiency || 0) - (optimalTotals.efficiency || 0)).toFixed(4)),
powerDelta: Number((priorityTotals.power - optimalTotals.power).toFixed(3))
}); });
} }
} const bucket = map.get(key);
const stats = row.modes[mode];
logPass(label, "efficiencyComparisons array populated"); bucket.samples += 1;
} catch (err) { bucket.avgFlowDiff += Math.abs(stats.flow - row.targetFlow);
logFail(label, err); bucket.avgEfficiency += stats.efficiency || 0;
} });
});
return Array.from(map.values()).map(item => ({
scenario: item.scenario,
mode: item.mode,
samples: item.samples,
avgFlowDiff: Number((item.avgFlowDiff / item.samples).toFixed(2)),
avgEfficiency: Number((item.avgEfficiency / item.samples).toFixed(3))
}));
} }
async function evaluateScenario(scenario) {
console.log(`\nRunning scenario "${scenario.name}": ${scenario.description}`);
const { mg, pt } = await bootstrapScenarioMachines(scenario);
const priorityOrder =
scenario.priorityList && scenario.priorityList.length
? scenario.priorityList
: scenario.machines.map(machine => machine.id);
async function run(){ const rows = [];
console.log("🚀 Starting machine-group integration tests...");
const { mg, pt } = await bootstrapGroup();
await testNormalizedScaling(mg, pt); for (const pressure of scenario.pressures) {
await testAbsoluteScaling(mg, pt); await setPressure(pt, pressure);
await testModeTransitions(mg, pt); await sleep(20);
await testRampBehaviour(mg, pt);
await testPressureAdaptation(mg, pt);
await comparePriorityVsOptimal(mg, pt);
console.log("\n📋 TEST SUMMARY"); const dynamicTotals = mg.calcDynamicTotals();
console.table(testSuite); const targets = computeAbsoluteTargets(dynamicTotals, scenario.flowTargetsPercent || [0, 0.5, 1]);
console.log("\n📊 efficiencyComparisons:");
console.dir(efficiencyComparisons, { depth:null }); for (let idx = 0; idx < targets.length; idx += 1) {
console.log("✅ All tests completed."); const targetFlow = targets[idx];
const row = {
scenario: scenario.name,
pressure,
targetFlow,
modes: {}
};
for (const mode of CONTROL_MODES) {
const stats = await driveModeToFlow({
mg,
pt,
mode,
pressure,
targetFlow,
priorityOrder
});
row.modes[mode] = stats;
}
rows.push(row);
}
}
console.log(`Efficiency comparison table for scenario "${scenario.name}":`);
console.table(formatEfficiencyRows(rows));
return { rows };
}
async function run() {
const combinedRows = [];
for (const scenario of scenarios) {
const { rows } = await evaluateScenario(scenario);
combinedRows.push(...rows);
}
console.log('\nEfficiency summary by scenario and control mode:');
console.table(summarizeEfficiency(combinedRows));
console.log('\nAll machine group control tests completed successfully.');
} }
run().catch(err => { run().catch(err => {
console.error("💥 Test harness crashed:", err); console.error('Machine group control test harness crashed:', err);
process.exitCode = 1;
}); });
// ...existing code...
// Run all tests
run();

View File

@@ -411,10 +411,8 @@ class MachineGroup {
return { bestCombination, bestPower, bestFlow, bestCog }; return { bestCombination, bestPower, bestFlow, bestCog };
} }
/**
* Estimate the local dP/dQ slopes around the BEP for the provided machine. // Estimate the local dP/dQ slopes around the BEP for the provided machine.
* A gentle +/- delta perturbation is used to keep calling code self-contained.
*/
estimateSlopesAtBEP(machine, Q_BEP, delta = 1.0) { estimateSlopesAtBEP(machine, Q_BEP, delta = 1.0) {
const fallback = { const fallback = {
slopeLeft: 0, slopeLeft: 0,
@@ -424,65 +422,48 @@ class MachineGroup {
P_BEP: 0 P_BEP: 0
}; };
try { const minFlow = machine.predictFlow.currentFxyYMin;
if (!machine || !machine.hasCurve || !machine.predictFlow) { const maxFlow = machine.predictFlow.currentFxyYMax;
this.logger.warn(`estimateSlopesAtBEP: invalid machine input provided.`); const span = Math.max(0, maxFlow - minFlow);
return fallback; const normalizedCog = Math.max(0, Math.min(1, machine.NCog || 0));
} const targetBEP = Q_BEP ?? (minFlow + span * normalizedCog);
const clampFlow = (flow) => Math.min(maxFlow, Math.max(minFlow, flow)); // ensure within bounds using small helper function
const center = clampFlow(targetBEP);
const deltaSafe = Math.max(delta, 0.01);
const leftFlow = clampFlow(center - deltaSafe);
const rightFlow = clampFlow(center + deltaSafe);
const powerAt = (flow) => machine.inputFlowCalcPower(flow); // helper to get power at a given flow
const P_center = powerAt(center);
const P_left = powerAt(leftFlow);
const P_right = powerAt(rightFlow);
const slopeLeft = (P_center - P_left) / Math.max(1e-6, center - leftFlow);
const slopeRight = (P_right - P_center) / Math.max(1e-6, rightFlow - center);
const alpha = Math.max(1e-6, (Math.abs(slopeLeft) + Math.abs(slopeRight)) / 2);
const minFlow = machine.predictFlow.currentFxyYMin; return {
const maxFlow = machine.predictFlow.currentFxyYMax; slopeLeft,
const span = Math.max(0, maxFlow - minFlow); slopeRight,
const normalizedCog = Math.max(0, Math.min(1, machine.NCog || 0)); alpha,
const targetBEP = Q_BEP ?? (minFlow + span * normalizedCog); Q_BEP: center,
const clampFlow = (flow) => Math.min(maxFlow, Math.max(minFlow, flow)); P_BEP: P_center
const center = clampFlow(targetBEP); };
const deltaSafe = Math.max(delta, 0.01);
const leftFlow = clampFlow(center - deltaSafe);
const rightFlow = clampFlow(center + deltaSafe);
const powerAt = (flow) => {
try {
return machine.inputFlowCalcPower(flow);
} catch (error) {
this.logger.warn(`estimateSlopesAtBEP: failed power calc for ${machine.config?.general?.id}: ${error.message}`);
return 0;
}
};
const P_center = powerAt(center);
const P_left = powerAt(leftFlow);
const P_right = powerAt(rightFlow);
const slopeLeft = (P_center - P_left) / Math.max(1e-6, center - leftFlow);
const slopeRight = (P_right - P_center) / Math.max(1e-6, rightFlow - center);
const alpha = Math.max(1e-6, (Math.abs(slopeLeft) + Math.abs(slopeRight)) / 2);
return {
slopeLeft,
slopeRight,
alpha,
Q_BEP: center,
P_BEP: P_center
};
} catch (err) {
this.logger.warn(`estimateSlopesAtBEP failed: ${err.message}`);
return fallback;
}
} }
/** //Redistribute remaining demand using slope-based weights so flatter curves attract more flow.
* Redistribute remaining demand using slope-based weights so flatter curves attract more flow.
*/
redistributeFlowBySlope(pumpInfos, flowDistribution, delta, directional = true) { redistributeFlowBySlope(pumpInfos, flowDistribution, delta, directional = true) {
const tolerance = 1e-3; const tolerance = 1e-3; // Small tolerance to avoid infinite loops
let remaining = delta; let remaining = delta; // Remaining flow to distribute
const entryMap = new Map(flowDistribution.map(entry => [entry.machineId, entry])); const entryMap = new Map(flowDistribution.map(entry => [entry.machineId, entry])); // Map for quick access
// Loop until remaining flow is within tolerance
while (Math.abs(remaining) > tolerance) { while (Math.abs(remaining) > tolerance) {
const increasing = remaining > 0; const increasing = remaining > 0; // Determine if we are increasing or decreasing flow
// Build candidates with capacity and weight
const candidates = pumpInfos.map(info => { const candidates = pumpInfos.map(info => {
const entry = entryMap.get(info.id); const entry = entryMap.get(info.id);
if (!entry) { return null; } if (!entry) { return null; }
const capacity = increasing ? info.maxFlow - entry.flow : entry.flow - info.minFlow; const capacity = increasing ? info.maxFlow - entry.flow : entry.flow - info.minFlow; // Calculate available capacity based on direction
if (capacity <= tolerance) { return null; } if (capacity <= tolerance) { return null; }
const slope = increasing const slope = increasing
@@ -493,32 +474,31 @@ class MachineGroup {
return { entry, capacity, weight }; return { entry, capacity, weight };
}).filter(Boolean); }).filter(Boolean);
if (!candidates.length) { break; } if (!candidates.length) { break; } // No candidates available, exit loop
const weightSum = candidates.reduce((sum, candidate) => sum + candidate.weight * candidate.capacity, 0); const weightSum = candidates.reduce((sum, candidate) => sum + candidate.weight * candidate.capacity, 0); // weighted sum of capacities
if (weightSum <= 0) { break; } if (weightSum <= 0) { break; } // Avoid division by zero
let progress = 0; let progress = 0;
// Distribute remaining flow among candidates based on their weights and capacities
candidates.forEach(candidate => { candidates.forEach(candidate => {
let share = (candidate.weight * candidate.capacity / weightSum) * Math.abs(remaining); let share = (candidate.weight * candidate.capacity / weightSum) * Math.abs(remaining);
share = Math.min(share, candidate.capacity); share = Math.min(share, candidate.capacity); // Ensure we don't exceed capacity
if (share <= 0) { return; } if (share <= 0) { return; } // Skip if no share to allocate
if (increasing) { if (increasing) {
candidate.entry.flow += share; candidate.entry.flow += share;
} else { } else {
candidate.entry.flow -= share; candidate.entry.flow -= share;
} }
progress += share; progress += share; // Track total progress made in this iteration
}); });
if (progress <= tolerance) { break; } if (progress <= tolerance) { break; }
remaining += increasing ? -progress : progress; remaining += increasing ? -progress : progress; // Update remaining flow to distribute
} }
} }
/** // BEP-gravitation based combination finder that biases allocation around each pump's BEP.
* BEP-gravitation based combination finder that biases allocation around each pump's BEP.
*/
calcBestCombinationBEPGravitation(combinations, Qd, method = "BEP-Gravitation-Directional") { calcBestCombinationBEPGravitation(combinations, Qd, method = "BEP-Gravitation-Directional") {
let bestCombination = null; let bestCombination = null;
let bestPower = Infinity; let bestPower = Infinity;
@@ -534,7 +514,7 @@ class MachineGroup {
const maxFlow = machine.predictFlow.currentFxyYMax; const maxFlow = machine.predictFlow.currentFxyYMax;
const span = Math.max(0, maxFlow - minFlow); const span = Math.max(0, maxFlow - minFlow);
const NCog = Math.max(0, Math.min(1, machine.NCog || 0)); const NCog = Math.max(0, Math.min(1, machine.NCog || 0));
const estimatedBEP = minFlow + span * NCog; const estimatedBEP = minFlow + span * NCog; // Estimated BEP flow based on current curve
const slopes = this.estimateSlopesAtBEP(machine, estimatedBEP); const slopes = this.estimateSlopesAtBEP(machine, estimatedBEP);
return { return {
id: machineId, id: machineId,
@@ -547,15 +527,17 @@ class MachineGroup {
}; };
}); });
// Skip if no pumps in combination
if (pumpInfos.length === 0) { return; } if (pumpInfos.length === 0) { return; }
// Start at BEP flows
const flowDistribution = pumpInfos.map(info => ({ const flowDistribution = pumpInfos.map(info => ({
machineId: info.id, machineId: info.id,
flow: Math.min(info.maxFlow, Math.max(info.minFlow, info.Q_BEP)) flow: Math.min(info.maxFlow, Math.max(info.minFlow, info.Q_BEP))
})); }));
let totalFlow = flowDistribution.reduce((sum, entry) => sum + entry.flow, 0); let totalFlow = flowDistribution.reduce((sum, entry) => sum + entry.flow, 0); // Initial total flow
const delta = Qd - totalFlow; const delta = Qd - totalFlow; // Difference to target demand
if (Math.abs(delta) > 1e-6) { if (Math.abs(delta) > 1e-6) {
this.redistributeFlowBySlope(pumpInfos, flowDistribution, delta, directional); this.redistributeFlowBySlope(pumpInfos, flowDistribution, delta, directional);
} }
@@ -1225,8 +1207,8 @@ class MachineGroup {
} }
module.exports = MachineGroup; module.exports = MachineGroup;
/* /*
const {coolprop} = require('generalFunctions');
const Machine = require('../../rotatingMachine/src/specificClass'); const Machine = require('../../rotatingMachine/src/specificClass');
const Measurement = require('../../measurement/src/specificClass'); const Measurement = require('../../measurement/src/specificClass');
const specs = require('../../generalFunctions/datasets/assetData/curves/hidrostal-H05K-S03R.json'); const specs = require('../../generalFunctions/datasets/assetData/curves/hidrostal-H05K-S03R.json');