342 lines
13 KiB
JavaScript
342 lines
13 KiB
JavaScript
const ASM3 = require('./reaction_modules/asm3_class.js');
|
|
const { create, all, isArray } = require('mathjs');
|
|
const { assertNoNaN } = require('./utils.js');
|
|
const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions');
|
|
const EventEmitter = require('events');
|
|
|
|
const mathConfig = {
|
|
matrix: 'Array' // use Array as the matrix type
|
|
};
|
|
|
|
const math = create(all, mathConfig);
|
|
|
|
const S_O_INDEX = 0;
|
|
const NUM_SPECIES = 13;
|
|
const DEBUG = false;
|
|
|
|
class Reactor {
|
|
/**
|
|
* Reactor base class.
|
|
* @param {object} config - Configuration object containing reactor parameters.
|
|
*/
|
|
constructor(config) {
|
|
this.config = config;
|
|
// EVOLV stuff
|
|
this.logger = new logger(undefined, undefined, config.general.name);
|
|
this.emitter = new EventEmitter();
|
|
this.measurements = new MeasurementContainer();
|
|
this.upstreamReactor = null;
|
|
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
|
|
|
|
this.asm = new ASM3();
|
|
|
|
this.volume = config.volume; // fluid volume reactor [m3]
|
|
|
|
this.Fs = Array(config.n_inlets).fill(0); // fluid debits per inlet [m3 d-1]
|
|
this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(NUM_SPECIES).fill(0)); // composition influents
|
|
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1]
|
|
this.temperature = 20; // temperature [C]
|
|
|
|
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
|
|
|
|
this.currentTime = Date.now(); // milliseconds since epoch [ms]
|
|
this.timeStep = 1 / (24*60*15); // time step [d]
|
|
this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second
|
|
}
|
|
|
|
updateMeasurement(variant, subType, value, position) {
|
|
this.logger.debug(`---------------------- updating ${subType} ------------------ `);
|
|
switch (subType) {
|
|
case "temperature":
|
|
this.temperature = value;
|
|
break;
|
|
default:
|
|
this.logger.error(`Type '${subType}' not recognized for measured update.`);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Setter for influent data.
|
|
* @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
|
|
*/
|
|
set setInfluent(input) {
|
|
let index_in = input.payload.inlet;
|
|
this.Fs[index_in] = input.payload.F;
|
|
this.Cs_in[index_in] = input.payload.C;
|
|
}
|
|
|
|
/**
|
|
* Setter for OTR (Oxygen Transfer Rate).
|
|
* @param {object} input - Input object (msg) containing payload with OTR value [g O2 d-1].
|
|
*/
|
|
set setOTR(input) {
|
|
this.OTR = input.payload;
|
|
}
|
|
|
|
/**
|
|
* Getter for effluent data.
|
|
* @returns {object} Effluent data object (msg), defaults to inlet 0.
|
|
*/
|
|
get getEffluent() { // getter for Effluent, defaults to inlet 0
|
|
if (isArray(this.state.at(-1))) {
|
|
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state.at(-1) }, timestamp: this.currentTime };
|
|
}
|
|
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state }, timestamp: this.currentTime };
|
|
}
|
|
|
|
/**
|
|
* Calculate the oxygen transfer rate (OTR) based on the dissolved oxygen concentration and temperature.
|
|
* @param {number} S_O - Dissolved oxygen concentration [g O2 m-3].
|
|
* @param {number} T - Temperature in Celsius, default to 20 C.
|
|
* @returns {number} - Calculated OTR [g O2 d-1].
|
|
*/
|
|
_calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
|
|
let S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
|
|
return this.kla * (S_O_sat - S_O);
|
|
}
|
|
|
|
/**
|
|
* Clip values in an array to zero.
|
|
* @param {Array} arr - Array of values to clip.
|
|
* @returns {Array} - New array with values clipped to zero.
|
|
*/
|
|
_arrayClip2Zero(arr) {
|
|
if (Array.isArray(arr)) {
|
|
return arr.map(x => this._arrayClip2Zero(x));
|
|
} else {
|
|
return arr < 0 ? 0 : arr;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Update the reactor state based on the new time.
|
|
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
|
|
*/
|
|
updateState(newTime) { // expect update with timestamp
|
|
const day2ms = 1000 * 60 * 60 * 24;
|
|
|
|
if (this.upstreamReactor) {
|
|
this.setInfluent = this.upstreamReactor.getEffluent;
|
|
}
|
|
|
|
let n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*day2ms));
|
|
if (n_iter) {
|
|
let n = 0;
|
|
while (n < n_iter) {
|
|
this.tick(this.timeStep);
|
|
n += 1;
|
|
}
|
|
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
|
|
this.emitter.emit("stateChange", newTime);
|
|
}
|
|
}
|
|
}
|
|
|
|
class Reactor_CSTR extends Reactor {
|
|
/**
|
|
* Reactor_CSTR class for Continuous Stirred Tank Reactor.
|
|
* @param {object} config - Configuration object containing reactor parameters.
|
|
*/
|
|
constructor(config) {
|
|
super(config);
|
|
this.state = config.initialState;
|
|
}
|
|
|
|
/**
|
|
* Tick the reactor state using the forward Euler method.
|
|
* @param {number} time_step - Time step for the simulation [d].
|
|
* @returns {Array} - New reactor state.
|
|
*/
|
|
tick(time_step) { // tick reactor state using forward Euler method
|
|
const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0];
|
|
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
|
|
const reaction = this.asm.compute_dC(this.state, this.temperature);
|
|
const transfer = Array(NUM_SPECIES).fill(0.0);
|
|
transfer[S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
|
|
|
|
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
|
|
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
|
|
if(DEBUG){
|
|
assertNoNaN(dC_total, "change in state");
|
|
assertNoNaN(this.state, "new state");
|
|
}
|
|
return this.state;
|
|
}
|
|
}
|
|
|
|
class Reactor_PFR extends Reactor {
|
|
/**
|
|
* Reactor_PFR class for Plug Flow Reactor.
|
|
* @param {object} config - Configuration object containing reactor parameters.
|
|
*/
|
|
constructor(config) {
|
|
super(config);
|
|
|
|
this.length = config.length; // reactor length [m]
|
|
this.n_x = config.resolution_L; // number of slices
|
|
|
|
this.d_x = this.length / this.n_x;
|
|
this.A = this.volume / this.length; // crosssectional area [m2]
|
|
|
|
this.alpha = config.alpha;
|
|
|
|
this.state = Array.from(Array(this.n_x), () => config.initialState.slice())
|
|
|
|
// console.log("Initial State: ")
|
|
// console.log(this.state)
|
|
|
|
this.D = 0.0; // axial dispersion [m2 d-1]
|
|
|
|
this.D_op = this._makeDoperator(true, true);
|
|
assertNoNaN(this.D_op, "Derivative operator");
|
|
|
|
this.D2_op = this._makeD2operator();
|
|
assertNoNaN(this.D2_op, "Second derivative operator");
|
|
}
|
|
|
|
/**
|
|
* Setter for axial dispersion.
|
|
* @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1].
|
|
*/
|
|
set setDispersion(input) {
|
|
this.D = input.payload;
|
|
}
|
|
|
|
updateState(newTime) {
|
|
super.updateState(newTime);
|
|
let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
|
|
let Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
|
|
|
|
(Pe_local >= 2) && console.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
|
|
(Co_D >= 0.5) && console.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
|
|
|
|
if(DEBUG) {
|
|
console.log("Inlet state max " + math.max(this.state[0]))
|
|
console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A));
|
|
console.log("Pe local " + Pe_local);
|
|
console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x));
|
|
console.log("Co D " + Co_D);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Tick the reactor state using explicit finite difference method.
|
|
* @param {number} time_step - Time step for the simulation [d].
|
|
* @returns {Array} - New reactor state.
|
|
*/
|
|
tick(time_step) {
|
|
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
|
|
const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.state);
|
|
const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
|
|
const transfer = Array.from(Array(this.n_x), () => new Array(NUM_SPECIES).fill(0));
|
|
|
|
if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
|
|
transfer.forEach((x) => { x[S_O_INDEX] = this.OTR; });
|
|
} else {
|
|
transfer.forEach((x, i) => { x[S_O_INDEX] = this._calcOTR(this.state[i][S_O_INDEX], this.temperature); });
|
|
}
|
|
|
|
const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step);
|
|
|
|
const stateNew = math.add(this.state, dC_total);
|
|
this._applyBoundaryConditions(stateNew);
|
|
|
|
if (DEBUG) {
|
|
assertNoNaN(dispersion, "dispersion");
|
|
assertNoNaN(advection, "advection");
|
|
assertNoNaN(reaction, "reaction");
|
|
assertNoNaN(dC_total, "change in state");
|
|
assertNoNaN(stateNew, "new state post BC");
|
|
}
|
|
|
|
this.state = this._arrayClip2Zero(stateNew);
|
|
return stateNew;
|
|
}
|
|
|
|
/**
|
|
* Apply boundary conditions to the reactor state.
|
|
* for inlet, apply generalised Danckwerts BC, if there is not flow, apply Neumann BC with no flux
|
|
* for outlet, apply regular Danckwerts BC (Neumann BC with no flux)
|
|
* @param {Array} state - Current reactor state without enforced BCs.
|
|
*/
|
|
_applyBoundaryConditions(state) {
|
|
if (math.sum(this.Fs) > 0) { // Danckwerts BC
|
|
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
|
|
const BC_dispersion_term = (1-this.alpha)*this.D*this.A/(math.sum(this.Fs)*this.d_x);
|
|
state[0] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, state[1])));
|
|
} else {
|
|
state[0] = state[1];
|
|
}
|
|
// Neumann BC (no flux)
|
|
state[this.n_x-1] = state[this.n_x-2];
|
|
}
|
|
|
|
/**
|
|
* Create finite difference first derivative operator.
|
|
* @param {boolean} central - Use central difference scheme if true, otherwise use upwind scheme.
|
|
* @param {boolean} higher_order - Use higher order scheme if true, otherwise use first order scheme.
|
|
* @returns {Array} - First derivative operator matrix.
|
|
*/
|
|
_makeDoperator(central = false, higher_order = false) { // create gradient operator
|
|
if (higher_order) {
|
|
if (central) {
|
|
const I = math.resize(math.diag(Array(this.n_x).fill(1/12), -2), [this.n_x, this.n_x]);
|
|
const A = math.resize(math.diag(Array(this.n_x).fill(-2/3), -1), [this.n_x, this.n_x]);
|
|
const B = math.resize(math.diag(Array(this.n_x).fill(2/3), 1), [this.n_x, this.n_x]);
|
|
const C = math.resize(math.diag(Array(this.n_x).fill(-1/12), 2), [this.n_x, this.n_x]);
|
|
const D = math.add(I, A, B, C);
|
|
const NearBoundary = Array(this.n_x).fill(0.0);
|
|
NearBoundary[0] = -1/4;
|
|
NearBoundary[1] = -5/6;
|
|
NearBoundary[2] = 3/2;
|
|
NearBoundary[3] = -1/2;
|
|
NearBoundary[4] = 1/12;
|
|
D[1] = NearBoundary;
|
|
NearBoundary.reverse();
|
|
D[this.n_x-2] = math.multiply(-1, NearBoundary);
|
|
D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
|
|
D[this.n_x-1] = Array(this.n_x).fill(0);
|
|
return D;
|
|
} else {
|
|
throw new Error("Upwind higher order method not implemented! Use central scheme instead.");
|
|
}
|
|
} else {
|
|
const I = math.resize(math.diag(Array(this.n_x).fill(1 / (1+central)), central), [this.n_x, this.n_x]);
|
|
const A = math.resize(math.diag(Array(this.n_x).fill(-1 / (1+central)), -1), [this.n_x, this.n_x]);
|
|
const D = math.add(I, A);
|
|
D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
|
|
D[this.n_x-1] = Array(this.n_x).fill(0);
|
|
return D;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Create central finite difference second derivative operator.
|
|
* @returns {Array} - Second derivative operator matrix.
|
|
*/
|
|
_makeD2operator() { // create the central second derivative operator
|
|
const I = math.diag(Array(this.n_x).fill(-2), 0);
|
|
const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]);
|
|
const B = math.resize(math.diag(Array(this.n_x).fill(1), -1), [this.n_x, this.n_x]);
|
|
const D2 = math.add(I, A, B);
|
|
D2[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
|
|
D2[this.n_x - 1] = Array(this.n_x).fill(0);
|
|
return D2;
|
|
}
|
|
}
|
|
|
|
module.exports = { Reactor_CSTR, Reactor_PFR };
|
|
|
|
// DEBUG
|
|
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
|
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
|
|
// const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state);
|
|
// Reactor.Cs_in[0] = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.];
|
|
// Reactor.Fs[0] = 10;
|
|
// Reactor.D = 0.01;
|
|
// let N = 0;
|
|
// while (N < 5000) {
|
|
// console.log(Reactor.tick(0.001));
|
|
// N += 1;
|
|
// }
|