const ASM3 = require('./reaction_modules/asm3_class.js'); const { create, all, isArray } = require('mathjs'); const { assertNoNaN } = require('./utils.js'); const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions'); const EventEmitter = require('events'); const mathConfig = { matrix: 'Array' // use Array as the matrix type }; const math = create(all, mathConfig); const S_O_INDEX = 0; const NUM_SPECIES = 13; const DEBUG = false; class Reactor { /** * Reactor base class. * @param {object} config - Configuration object containing reactor parameters. */ constructor(config) { this.config = config; // EVOLV stuff this.logger = new logger(undefined, undefined, config.general.name); this.emitter = new EventEmitter(); this.measurements = new MeasurementContainer(); this.upstreamReactor = null; this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility this.asm = new ASM3(); this.volume = config.volume; // fluid volume reactor [m3] this.Fs = Array(config.n_inlets).fill(0); // fluid debits per inlet [m3 d-1] this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(NUM_SPECIES).fill(0)); // composition influents this.OTR = 0.0; // oxygen transfer rate [g O2 d-1] this.temperature = 20; // temperature [C] this.kla = config.kla; // if NaN, use externaly provided OTR [d-1] this.currentTime = Date.now(); // milliseconds since epoch [ms] this.timeStep = 1 / (24*60*15); // time step [d] this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second } updateMeasurement(variant, subType, value, position) { this.logger.debug(`---------------------- updating ${subType} ------------------ `); switch (subType) { case "temperature": this.temperature = value; break; default: this.logger.error(`Type '${subType}' not recognized for measured update.`); return; } } /** * Setter for influent data. * @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations. */ set setInfluent(input) { let index_in = input.payload.inlet; this.Fs[index_in] = input.payload.F; this.Cs_in[index_in] = input.payload.C; } /** * Setter for OTR (Oxygen Transfer Rate). * @param {object} input - Input object (msg) containing payload with OTR value [g O2 d-1]. */ set setOTR(input) { this.OTR = input.payload; } /** * Getter for effluent data. * @returns {object} Effluent data object (msg), defaults to inlet 0. */ get getEffluent() { // getter for Effluent, defaults to inlet 0 if (isArray(this.state.at(-1))) { return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state.at(-1) }, timestamp: this.currentTime }; } return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state }, timestamp: this.currentTime }; } /** * Calculate the oxygen transfer rate (OTR) based on the dissolved oxygen concentration and temperature. * @param {number} S_O - Dissolved oxygen concentration [g O2 m-3]. * @param {number} T - Temperature in Celsius, default to 20 C. * @returns {number} - Calculated OTR [g O2 d-1]. */ _calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C let S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T; return this.kla * (S_O_sat - S_O); } /** * Clip values in an array to zero. * @param {Array} arr - Array of values to clip. * @returns {Array} - New array with values clipped to zero. */ _arrayClip2Zero(arr) { if (Array.isArray(arr)) { return arr.map(x => this._arrayClip2Zero(x)); } else { return arr < 0 ? 0 : arr; } } /** * Update the reactor state based on the new time. * @param {number} newTime - New time to update reactor state to, in milliseconds since epoch. */ updateState(newTime) { // expect update with timestamp const day2ms = 1000 * 60 * 60 * 24; if (this.upstreamReactor) { this.setInfluent = this.upstreamReactor.getEffluent; } let n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*day2ms)); if (n_iter) { let n = 0; while (n < n_iter) { this.tick(this.timeStep); n += 1; } this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor; this.emitter.emit("stateChange", newTime); } } } class Reactor_CSTR extends Reactor { /** * Reactor_CSTR class for Continuous Stirred Tank Reactor. * @param {object} config - Configuration object containing reactor parameters. */ constructor(config) { super(config); this.state = config.initialState; } /** * Tick the reactor state using the forward Euler method. * @param {number} time_step - Time step for the simulation [d]. * @returns {Array} - New reactor state. */ tick(time_step) { // tick reactor state using forward Euler method const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0]; const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state); const reaction = this.asm.compute_dC(this.state, this.temperature); const transfer = Array(NUM_SPECIES).fill(0.0); transfer[S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step) this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations if(DEBUG){ assertNoNaN(dC_total, "change in state"); assertNoNaN(this.state, "new state"); } return this.state; } } class Reactor_PFR extends Reactor { /** * Reactor_PFR class for Plug Flow Reactor. * @param {object} config - Configuration object containing reactor parameters. */ constructor(config) { super(config); this.length = config.length; // reactor length [m] this.n_x = config.resolution_L; // number of slices this.d_x = this.length / this.n_x; this.A = this.volume / this.length; // crosssectional area [m2] this.alpha = config.alpha; this.state = Array.from(Array(this.n_x), () => config.initialState.slice()) // console.log("Initial State: ") // console.log(this.state) this.D = 0.0; // axial dispersion [m2 d-1] this.D_op = this._makeDoperator(true, true); assertNoNaN(this.D_op, "Derivative operator"); this.D2_op = this._makeD2operator(); assertNoNaN(this.D2_op, "Second derivative operator"); } /** * Setter for axial dispersion. * @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1]. */ set setDispersion(input) { this.D = input.payload; } updateState(newTime) { super.updateState(newTime); let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A) let Co_D = this.D*this.timeStep/(this.d_x*this.d_x); (Pe_local >= 2) && console.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`); (Co_D >= 0.5) && console.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`); if(DEBUG) { console.log("Inlet state max " + math.max(this.state[0])) console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A)); console.log("Pe local " + Pe_local); console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x)); console.log("Co D " + Co_D); } } /** * Tick the reactor state using explicit finite difference method. * @param {number} time_step - Time step for the simulation [d]. * @returns {Array} - New reactor state. */ tick(time_step) { const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state); const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.state); const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature)); const transfer = Array.from(Array(this.n_x), () => new Array(NUM_SPECIES).fill(0)); if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR transfer.forEach((x) => { x[S_O_INDEX] = this.OTR; }); } else { transfer.forEach((x, i) => { x[S_O_INDEX] = this._calcOTR(this.state[i][S_O_INDEX], this.temperature); }); } const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step); const stateNew = math.add(this.state, dC_total); this._applyBoundaryConditions(stateNew); if (DEBUG) { assertNoNaN(dispersion, "dispersion"); assertNoNaN(advection, "advection"); assertNoNaN(reaction, "reaction"); assertNoNaN(dC_total, "change in state"); assertNoNaN(stateNew, "new state post BC"); } this.state = this._arrayClip2Zero(stateNew); return stateNew; } /** * Apply boundary conditions to the reactor state. * for inlet, apply generalised Danckwerts BC, if there is not flow, apply Neumann BC with no flux * for outlet, apply regular Danckwerts BC (Neumann BC with no flux) * @param {Array} state - Current reactor state without enforced BCs. */ _applyBoundaryConditions(state) { if (math.sum(this.Fs) > 0) { // Danckwerts BC const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0]; const BC_dispersion_term = (1-this.alpha)*this.D*this.A/(math.sum(this.Fs)*this.d_x); state[0] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, state[1]))); } else { state[0] = state[1]; } // Neumann BC (no flux) state[this.n_x-1] = state[this.n_x-2]; } /** * Create finite difference first derivative operator. * @param {boolean} central - Use central difference scheme if true, otherwise use upwind scheme. * @param {boolean} higher_order - Use higher order scheme if true, otherwise use first order scheme. * @returns {Array} - First derivative operator matrix. */ _makeDoperator(central = false, higher_order = false) { // create gradient operator if (higher_order) { if (central) { const I = math.resize(math.diag(Array(this.n_x).fill(1/12), -2), [this.n_x, this.n_x]); const A = math.resize(math.diag(Array(this.n_x).fill(-2/3), -1), [this.n_x, this.n_x]); const B = math.resize(math.diag(Array(this.n_x).fill(2/3), 1), [this.n_x, this.n_x]); const C = math.resize(math.diag(Array(this.n_x).fill(-1/12), 2), [this.n_x, this.n_x]); const D = math.add(I, A, B, C); const NearBoundary = Array(this.n_x).fill(0.0); NearBoundary[0] = -1/4; NearBoundary[1] = -5/6; NearBoundary[2] = 3/2; NearBoundary[3] = -1/2; NearBoundary[4] = 1/12; D[1] = NearBoundary; NearBoundary.reverse(); D[this.n_x-2] = math.multiply(-1, NearBoundary); D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere D[this.n_x-1] = Array(this.n_x).fill(0); return D; } else { throw new Error("Upwind higher order method not implemented! Use central scheme instead."); } } else { const I = math.resize(math.diag(Array(this.n_x).fill(1 / (1+central)), central), [this.n_x, this.n_x]); const A = math.resize(math.diag(Array(this.n_x).fill(-1 / (1+central)), -1), [this.n_x, this.n_x]); const D = math.add(I, A); D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere D[this.n_x-1] = Array(this.n_x).fill(0); return D; } } /** * Create central finite difference second derivative operator. * @returns {Array} - Second derivative operator matrix. */ _makeD2operator() { // create the central second derivative operator const I = math.diag(Array(this.n_x).fill(-2), 0); const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]); const B = math.resize(math.diag(Array(this.n_x).fill(1), -1), [this.n_x, this.n_x]); const D2 = math.add(I, A, B); D2[0] = Array(this.n_x).fill(0); // set by BCs elsewhere D2[this.n_x - 1] = Array(this.n_x).fill(0); return D2; } } module.exports = { Reactor_CSTR, Reactor_PFR }; // DEBUG // state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS // let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]; // const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state); // Reactor.Cs_in[0] = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.]; // Reactor.Fs[0] = 10; // Reactor.D = 0.01; // let N = 0; // while (N < 5000) { // console.log(Reactor.tick(0.001)); // N += 1; // }