Add support for multiple reactor types (CSTR and PFR) with corresponding properties (Dichelet BC for now)
This commit is contained in:
110
dependencies/reactor_class.js
vendored
110
dependencies/reactor_class.js
vendored
@@ -5,7 +5,6 @@ class Reactor_CSTR {
|
||||
|
||||
constructor(volume, n_inlets, kla, initial_state) {
|
||||
this.state = initial_state;
|
||||
console.log(this.state);
|
||||
this.asm = new ASM3();
|
||||
|
||||
this.Vl = volume; // fluid volume reactor [m3]
|
||||
@@ -17,7 +16,7 @@ class Reactor_CSTR {
|
||||
|
||||
this.currentTime = Date.now(); // milliseconds since epoch [ms]
|
||||
this.timeStep = 1/(24*60*15); // time step [d]
|
||||
this.speedUpFactor = 30;
|
||||
this.speedUpFactor = 1;
|
||||
}
|
||||
|
||||
set setInfluent(input) { // setter for C_in (WIP)
|
||||
@@ -69,6 +68,113 @@ class Reactor_CSTR {
|
||||
}
|
||||
}
|
||||
|
||||
class Reactor_PFR {
|
||||
|
||||
constructor(volume, length, resolution_L, n_inlets, kla, initial_state) {
|
||||
this.asm = new ASM3();
|
||||
|
||||
this.Vl = volume; // fluid volume reactor [m3]
|
||||
this.length = length; // reactor length [m]
|
||||
this.n_x = resolution_L; // number of slices
|
||||
this.d_x = length / resolution_L;
|
||||
|
||||
this.A = volume / length; // crosssectional area [m2]
|
||||
|
||||
this.state = Array.from(Array(this.n_x), () => initial_state.slice())
|
||||
|
||||
this.Fs = Array(n_inlets).fill(0.0); // fluid debits per inlet [m3 d-1]
|
||||
this.Cs_in = Array.from(Array(n_inlets), () => new Array(13).fill(0.0)); // composition influents
|
||||
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1]
|
||||
this.D = 0.0; // axial dispersion [m2 d-1]
|
||||
|
||||
this.kla = kla; // if NaN, use external OTR [d-1]
|
||||
|
||||
this.currentTime = Date.now(); // milliseconds since epoch [ms]
|
||||
this.timeStep = 1/(24*60*15); // time step [d]
|
||||
this.speedUpFactor = 1;
|
||||
|
||||
this.D_op = makeDoperator();
|
||||
this.D2_op = makeD2operator();
|
||||
}
|
||||
|
||||
set setInfluent(input) { // setter for C_in (WIP)
|
||||
let index_in = input.payload.inlet;
|
||||
this.Fs[index_in] = input.payload.F;
|
||||
this.Cs_in[index_in] = input.payload.C;
|
||||
}
|
||||
|
||||
set setOTR(input) { // setter for OTR (WIP) [g O2 d-1]
|
||||
this.OTR = input.payload;
|
||||
}
|
||||
|
||||
set setDispersion(input) { // setter for Axial dispersion [m2 d-1]
|
||||
this.D = input.payload;
|
||||
}
|
||||
|
||||
get getEffluent() { // getter for Effluent, defaults to inlet 0
|
||||
return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state}, timestamp: this.currentTime};
|
||||
}
|
||||
|
||||
calcOTR(S_O, T=20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
|
||||
let S_O_sat = 14.652 - 4.1022e-1*T + 7.9910e-3*T*T + 7.7774e-5*T*T*T;
|
||||
return this.kla * (S_O_sat - S_O);
|
||||
}
|
||||
|
||||
// expect update with timestamp
|
||||
updateState(newTime) {
|
||||
|
||||
const day2ms = 1000 * 60 * 60 * 24;
|
||||
|
||||
let n_iter = Math.floor(this.speedUpFactor*(newTime - this.currentTime) / (this.timeStep * day2ms));
|
||||
if (n_iter) {
|
||||
let n = 0;
|
||||
while (n < n_iter) {
|
||||
this.tick_fe(this.timeStep);
|
||||
n += 1;
|
||||
}
|
||||
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
|
||||
}
|
||||
}
|
||||
|
||||
tick_fe(time_step) { // tick reactor state using forward Euler method
|
||||
if (math.sum(this.Fs) > 0) {
|
||||
this.state[0] = math.multiply(math.divide([this.Fs], this.A), this.Cs_in)[0] // Dichelet boundary condition
|
||||
}
|
||||
|
||||
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
|
||||
const advection = math.multiply(math.sum(this.Fs)/(this.A*this.d_x), this.D_op, this.state);
|
||||
const reaction = this.state.map(this.asm.compute_dC);
|
||||
const transfer = Array.from(Array(this.n_x), () => new Array(13).fill(0.0))
|
||||
|
||||
if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
|
||||
transfer.forEach((x) => { x[0] = this.OTR; });
|
||||
} else {
|
||||
transfer.forEach((x, i) => { x[0] = this.calcOTR(this.state[i][0]); });
|
||||
}
|
||||
|
||||
const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step);
|
||||
|
||||
this.state = math.abs(math.add(this.state, dC_total)); // make sure that concentrations do not go negative
|
||||
return this.state;
|
||||
}
|
||||
|
||||
makeDoperator() { // create the upwind scheme gradient operator
|
||||
const I = math.identity(this.n_x);
|
||||
const A = math.diag(Array(this.n_x).fill(-1), 1).resize([this.n_x, this.n_x]);
|
||||
I[this.n_x-1, this.n_x-1] = 0; // Neumann boundary condition at x=L
|
||||
return math.add(I, A);
|
||||
}
|
||||
|
||||
makeD2operator() { // create the upwind scheme second derivative operator
|
||||
const I = math.diag(Array(this.n_x).fill(2), 0);
|
||||
const A = math.diag(Array(this.n_x).fill(-1), 1).resize([this.n_x, this.n_x]);
|
||||
const B = math.diag(Array(this.n_x).fill(-1), -1).resize([this.n_x, this.n_x]);
|
||||
I[0, 0] = 1;
|
||||
return math.add(I, A, B);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// testing stuff
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
|
||||
|
||||
Reference in New Issue
Block a user