Refactor documentation in nodeClass and reactor_class for clarity and consistency

This commit is contained in:
2025-07-04 13:52:28 +02:00
parent c239b71ad8
commit 09e7072d16
2 changed files with 90 additions and 47 deletions

View File

@@ -3,7 +3,7 @@ const { Reactor_CSTR, Reactor_PFR } = require('./reactor_class.js');
class nodeClass { class nodeClass {
/** /**
* Construct ReactorNode. * Node-RED node class for advanced-reactor.
* @param {object} uiConfig - Node-RED node configuration * @param {object} uiConfig - Node-RED node configuration
* @param {object} RED - Node-RED runtime API * @param {object} RED - Node-RED runtime API
* @param {object} nodeInstance - Node-RED node instance * @param {object} nodeInstance - Node-RED node instance

View File

@@ -8,7 +8,10 @@ const config = {
const math = create(all, config) const math = create(all, config)
class Reactor { class Reactor {
/**
* Reactor base class.
* @param {object} config - Configuration object containing reactor parameters.
*/
constructor(config){ constructor(config){
this.asm = new ASM3(); this.asm = new ASM3();
@@ -18,62 +21,91 @@ class Reactor {
this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(13).fill(0.0)); // composition influents this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(13).fill(0.0)); // composition influents
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1] this.OTR = 0.0; // oxygen transfer rate [g O2 d-1]
this.kla = config.kla; // if NaN, use external OTR [d-1] this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
this.currentTime = Date.now(); // milliseconds since epoch [ms] this.currentTime = Date.now(); // milliseconds since epoch [ms]
this.timeStep = 1/(24*60*15); // time step [d] this.timeStep = 1/(24*60*15); // time step [d]
this.speedUpFactor = 60; this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second
} }
set setInfluent(input) { // setter for C_in (WIP) /**
* Setter for influent data.
* @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
*/
set setInfluent(input) {
let index_in = input.payload.inlet; let index_in = input.payload.inlet;
this.Fs[index_in] = input.payload.F; this.Fs[index_in] = input.payload.F;
this.Cs_in[index_in] = input.payload.C; this.Cs_in[index_in] = input.payload.C;
// DEBUG
// console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A)); // console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A));
// console.log("Pe local " + this.d_x*math.sum(this.Fs)/(this.D*this.A)); // console.log("Pe local " + this.d_x*math.sum(this.Fs)/(this.D*this.A));
// console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x)); // console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x));
// console.log("Co D " + this.D*this.timeStep/(this.d_x*this.d_x)); // console.log("Co D " + this.D*this.timeStep/(this.d_x*this.d_x));
} }
set setOTR(input) { // setter for OTR (WIP) [g O2 d-1] /**
* Setter for OTR (Oxygen Transfer Rate).
* @param {object} input - Input object (msg) containing payload with OTR value [g O2 d-1].
*/
set setOTR(input) {
this.OTR = input.payload; this.OTR = input.payload;
} }
/**
*
* @param {number} S_O - Dissolved oxygen concentration [g O2 m-3].
* @param {number} T - Temperature in Celsius, default to 20 C.
* @returns
*/
calcOTR(S_O, T=20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C calcOTR(S_O, T=20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
let S_O_sat = 14.652 - 4.1022e-1*T + 7.9910e-3*T*T + 7.7774e-5*T*T*T; let S_O_sat = 14.652 - 4.1022e-1*T + 7.9910e-3*T*T + 7.7774e-5*T*T*T;
return this.kla * (S_O_sat - S_O); return this.kla * (S_O_sat - S_O);
} }
} /**
* Update the reactor state based on the new time.
class Reactor_CSTR extends Reactor { * @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
constructor(config) { updateState(newTime) { // expect update with timestamp
super(config);
this.state = config.initialState;
}
get getEffluent() { // getter for Effluent, defaults to inlet 0
return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state}, timestamp: this.currentTime};
}
// expect update with timestamp
updateState(newTime) {
const day2ms = 1000 * 60 * 60 * 24; const day2ms = 1000 * 60 * 60 * 24;
let n_iter = Math.floor(this.speedUpFactor*(newTime - this.currentTime) / (this.timeStep * day2ms)); let n_iter = Math.floor(this.speedUpFactor*(newTime - this.currentTime) / (this.timeStep * day2ms));
if (n_iter) { if (n_iter) {
let n = 0; let n = 0;
while (n < n_iter) { while (n < n_iter) {
this.tick_fe(this.timeStep); this.tick(this.timeStep);
n += 1; n += 1;
} }
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor; this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
} }
} }
tick_fe(time_step) { // tick reactor state using forward Euler method }
class Reactor_CSTR extends Reactor {
/**
* Reactor_CSTR class for Continuous Stirred Tank Reactor.
* @param {object} config - Configuration object containing reactor parameters.
*/
constructor(config) {
super(config);
this.state = config.initialState;
}
/**
* Getter for effluent data.
* @returns {object} Effluent data object (msg), defaults to inlet 0.
*/
get getEffluent() { // getter for Effluent, defaults to inlet 0
return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state}, timestamp: this.currentTime};
}
/**
* Tick the reactor state using the forward Euler method.
* @param {number} time_step - Time step for the simulation [d].
* @returns {Array} - New reactor state.
*/
tick(time_step) { // tick reactor state using forward Euler method
const r = this.asm.compute_dC(this.state); const r = this.asm.compute_dC(this.state);
const dC_in = math.multiply(math.divide([this.Fs], this.Vl), this.Cs_in)[0]; const dC_in = math.multiply(math.divide([this.Fs], this.Vl), this.Cs_in)[0];
const dC_out = math.multiply(-1*math.sum(this.Fs)/this.Vl, this.state); const dC_out = math.multiply(-1*math.sum(this.Fs)/this.Vl, this.state);
@@ -89,7 +121,10 @@ class Reactor_CSTR extends Reactor {
} }
class Reactor_PFR extends Reactor { class Reactor_PFR extends Reactor {
/**
* Reactor_PFR class for Plug Flow Reactor.
* @param {object} config - Configuration object containing reactor parameters.
*/
constructor(config) { constructor(config) {
super(config); super(config);
@@ -110,30 +145,28 @@ class Reactor_PFR extends Reactor {
this.D2_op = this.makeD2operator(); this.D2_op = this.makeD2operator();
} }
set setDispersion(input) { // setter for Axial dispersion [m2 d-1] /**
* Setter for axial dispersion.
* @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1].
*/
set setDispersion(input) {
this.D = input.payload; this.D = input.payload;
} }
get getEffluent() { // getter for Effluent, defaults to inlet 0 /**
* Getter for effluent data.
* @returns {object} Effluent data object (msg), defaults to inlet 0.
*/
get getEffluent() {
return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state.at(-1)}, timestamp: this.currentTime}; return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state.at(-1)}, timestamp: this.currentTime};
} }
// expect update with timestamp /**
updateState(newTime) { * Tick the reactor state using explicit finite difference method.
const day2ms = 1000 * 60 * 60 * 24; * @param {number} time_step - Time step for the simulation [d].
* @returns {Array} - New reactor state.
let n_iter = Math.floor(this.speedUpFactor*(newTime - this.currentTime) / (this.timeStep * day2ms)); */
if (n_iter) { tick(time_step) {
let n = 0;
while (n < n_iter) {
this.tick_fe(this.timeStep);
n += 1;
}
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
}
}
tick_fe(time_step) { // tick reactor state using forward Euler method
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state); const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
const advection = math.multiply(-1*math.sum(this.Fs)/(this.A*this.d_x), this.D_op, this.state); const advection = math.multiply(-1*math.sum(this.Fs)/(this.A*this.d_x), this.D_op, this.state);
const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice)); const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice));
@@ -185,6 +218,12 @@ class Reactor_PFR extends Reactor {
return new_state; return new_state;
} }
/**
* Create finite difference first derivative operator.
* @param {boolean} central - Use central difference scheme if true, otherwise use upwind scheme.
* @param {boolean} higher_order - Use higher order scheme if true, otherwise use first order scheme.
* @returns {Array} - First derivative operator matrix.
*/
makeDoperator(central=false, higher_order=false) { // create gradient operator makeDoperator(central=false, higher_order=false) { // create gradient operator
if (higher_order) { if (higher_order) {
if (central) { if (central) {
@@ -218,6 +257,10 @@ class Reactor_PFR extends Reactor {
} }
} }
/**
* Create central finite difference second derivative operator.
* @returns {Array} - Second derivative operator matrix.
*/
makeD2operator() { // create the central second derivative operator makeD2operator() { // create the central second derivative operator
const I = math.diag(Array(this.n_x).fill(-2), 0); const I = math.diag(Array(this.n_x).fill(-2), 0);
const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]); const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]);
@@ -230,7 +273,7 @@ class Reactor_PFR extends Reactor {
} }
// testing stuff // DEBUG
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS // state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]; // let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
// const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state); // const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state);
@@ -239,7 +282,7 @@ class Reactor_PFR extends Reactor {
// Reactor.D = 0.01; // Reactor.D = 0.01;
// let N = 0; // let N = 0;
// while (N < 5000) { // while (N < 5000) {
// console.log(Reactor.tick_fe(0.001)); // console.log(Reactor.tick(0.001));
// N += 1; // N += 1;
// } // }