const ASM3 = require('./asm3_class') const { create, all } = require('mathjs') const config = { matrix: 'Array' // Choose 'Matrix' (default) or 'Array' } const math = create(all, config) class Reactor_CSTR { constructor(volume, n_inlets, kla, initial_state) { this.state = initial_state; this.asm = new ASM3(); this.Vl = volume; // fluid volume reactor [m3] this.Fs = Array(n_inlets).fill(0.0); // fluid debits per inlet [m3 d-1] this.Cs_in = Array.from(Array(n_inlets), () => new Array(13).fill(0.0)); // composition influents this.OTR = 0.0; // oxygen transfer rate [g O2 d-1] this.kla = kla; // if NaN, use external OTR [d-1] this.currentTime = Date.now(); // milliseconds since epoch [ms] this.timeStep = 1/(24*60*15); // time step [d] this.speedUpFactor = 1; } set setInfluent(input) { // setter for C_in (WIP) let index_in = input.payload.inlet; this.Fs[index_in] = input.payload.F; this.Cs_in[index_in] = input.payload.C; } set setOTR(input) { // setter for OTR (WIP) [g O2 d-1] this.OTR = input.payload; } get getEffluent() { // getter for Effluent, defaults to inlet 0 return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state}, timestamp: this.currentTime}; } calcOTR(S_O, T=20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C let S_O_sat = 14.652 - 4.1022e-1*T + 7.9910e-3*T*T + 7.7774e-5*T*T*T; return this.kla * (S_O_sat - S_O); } // expect update with timestamp updateState(newTime) { const day2ms = 1000 * 60 * 60 * 24; let n_iter = Math.floor(this.speedUpFactor*(newTime - this.currentTime) / (this.timeStep * day2ms)); if (n_iter) { let n = 0; while (n < n_iter) { this.tick_fe(this.timeStep); n += 1; } this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor; } } tick_fe(time_step) { // tick reactor state using forward Euler method const r = this.asm.compute_dC(this.state); const dC_in = math.multiply(math.divide([this.Fs], this.Vl), this.Cs_in)[0]; const dC_out = math.multiply(-1*math.sum(this.Fs)/this.Vl, this.state); const t_O = Array(13).fill(0.0); t_O[0] = isNaN(this.kla) ? this.OTR : this.calcOTR(this.state[0]); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR const dC_total = math.multiply(math.add(dC_in, dC_out, r, t_O), time_step); // clip value element-wise to each subarray to avoid negative concentrations this.state = math.add(this.state, dC_total).map(val => val < 0 ? 0 : val); return this.state; } } class Reactor_PFR { constructor(volume, length, resolution_L, n_inlets, kla, initial_state) { this.asm = new ASM3(); this.Vl = volume; // fluid volume reactor [m3] this.length = length; // reactor length [m] this.n_x = resolution_L; // number of slices this.d_x = length / resolution_L; this.A = volume / length; // crosssectional area [m2] this.state = Array.from(Array(this.n_x), () => initial_state.slice()) // console.log("Initial State: ") // console.log(this.state) this.Fs = Array(n_inlets).fill(0.0); // fluid debits per inlet [m3 d-1] this.Cs_in = Array.from(Array(n_inlets), () => new Array(13).fill(0.0)); // composition influents this.OTR = 0.0; // oxygen transfer rate [g O2 d-1] this.D = 0.0; // axial dispersion [m2 d-1] this.kla = kla; // if NaN, use external OTR [d-1] this.currentTime = Date.now(); // milliseconds since epoch [ms] this.timeStep = 1/(24*60*15); // time step [d] this.speedUpFactor = 60; this.D_op = this.makeDoperator(true); this.D2_op = this.makeD2operator(); } set setInfluent(input) { // setter for C_in (WIP) let index_in = input.payload.inlet; this.Fs[index_in] = input.payload.F; this.Cs_in[index_in] = input.payload.C; console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A)); console.log("Pe local " + this.d_x*math.sum(this.Fs)/(this.D*this.A)); console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x)); console.log("Co D " + this.D*this.timeStep/(this.d_x*this.d_x)); } set setOTR(input) { // setter for OTR (WIP) [g O2 d-1] this.OTR = input.payload; } set setDispersion(input) { // setter for Axial dispersion [m2 d-1] this.D = input.payload; } get getEffluent() { // getter for Effluent, defaults to inlet 0 return {topic: "Fluent", payload: {inlet: 0, F: math.sum(this.Fs), C:this.state.at(-1)}, timestamp: this.currentTime}; } calcOTR(S_O, T=20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C let S_O_sat = 14.652 - 4.1022e-1*T + 7.9910e-3*T*T + 7.7774e-5*T*T*T; return this.kla * (S_O_sat - S_O); } // expect update with timestamp updateState(newTime) { const day2ms = 1000 * 60 * 60 * 24; let n_iter = Math.floor(this.speedUpFactor*(newTime - this.currentTime) / (this.timeStep * day2ms)); if (n_iter) { let n = 0; while (n < n_iter) { this.tick_fe(this.timeStep); n += 1; } this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor; } } tick_fe(time_step) { // tick reactor state using forward Euler method const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state); const advection = math.multiply(-1*math.sum(this.Fs)/(this.A*this.d_x), this.D_op, this.state); const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice)); const transfer = Array.from(Array(this.n_x), () => new Array(13).fill(0.0)); if (dispersion.some(row => row.some(Number.isNaN))) { throw new Error("NaN detected in dispersion!"); } if (advection.some(row => row.some(Number.isNaN))) { throw new Error("NaN detected in advection!"); } if (reaction.some(row => row.some(Number.isNaN))) { throw new Error("NaN detected in reaction!"); } if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR transfer.forEach((x) => { x[0] = this.OTR; }); } else { transfer.forEach((x, i) => { x[0] = this.calcOTR(this.state[i][0]); }); } const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step); const new_state = math.add(this.state, dC_total); if (new_state.some(row => row.some(Number.isNaN))) { throw new Error("NaN detected in new_state after dC_total update!"); } // apply boundary conditions if (math.sum(this.Fs) > 0) { // Danckwerts BC const BC_C_in = math.multiply(1/math.sum(this.Fs), [this.Fs], this.Cs_in)[0]; const BC_gradient = Array(this.n_x).fill(0.0); BC_gradient[0] = -1; BC_gradient[1] = 1; const BC_dispersion = math.multiply(this.D * this.A / (math.sum(this.Fs)*this.d_x), [BC_gradient], new_state)[0]; console.log(math.add(BC_C_in, BC_dispersion)); new_state[0] = math.add(BC_C_in, BC_dispersion).map(val => val < 0 ? 0 : val); } else { // Neumann BC (no flux) new_state[0] = new_state[1]; } // Neumann BC (no flux) new_state[this.n_x-1] = new_state[this.n_x-2] if (new_state.some(row => row.some(Number.isNaN))) { throw new Error("NaN detected in new_state after enforcing boundary conditions!"); } this.state = new_state.map(row => row.map(val => val < 0 ? 0 : val)); // apply the new state return new_state; } makeDoperator(central=false, higher_order=false) { // create gradient operator if (higher_order) { if (central) { const I = math.resize(math.diag(Array(this.n_x).fill(1/12), -2), [this.n_x, this.n_x]); const A = math.resize(math.diag(Array(this.n_x).fill(-2/3), -1), [this.n_x, this.n_x]); const B = math.resize(math.diag(Array(this.n_x).fill(2/3), 1), [this.n_x, this.n_x]); const C = math.resize(math.diag(Array(this.n_x).fill(-1/12), 2), [this.n_x, this.n_x]); const D = math.add(I, A); const NearBoundary = Array(this.n_x).fill(0.0); NearBoundary[1] = -25/12; NearBoundary[2] = 4; NearBoundary[3] = -3; NearBoundary[4] = 4/3; NearBoundary[5] = -1/4; D[1] = NearBoundary; NearBoundary.reverse(); D[this.n_x-2] = math.multiply(-1, NearBoundary) } else { throw new Error("Upwind higher order method not implemented! Use central scheme instead."); } } else { const I = math.resize(math.diag(Array(this.n_x).fill(1/(1+central)), central), [this.n_x, this.n_x]); const A = math.resize(math.diag(Array(this.n_x).fill(-1/(1+central)), -1), [this.n_x, this.n_x]); const D = math.add(I, A); } D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere D[this.n_x-1] = Array(this.n_x).fill(0); return D; } makeD2operator() { // create the central second derivative operator const I = math.diag(Array(this.n_x).fill(-2), 0); const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]); const B = math.resize(math.diag(Array(this.n_x).fill(1), -1), [this.n_x, this.n_x]); const D2 = math.add(I, A, B); D2[0] = Array(this.n_x).fill(0); // set by BCs elsewhere D2[this.n_x-1] = Array(this.n_x).fill(0); return D2; } } // testing stuff // state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS // let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]; // const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state); // Reactor.Cs_in[0] = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.]; // Reactor.Fs[0] = 10; // Reactor.D = 0.01; // let N = 0; // while (N < 5000) { // console.log(Reactor.tick_fe(0.001)); // N += 1; // } module.exports = { Reactor_CSTR, Reactor_PFR };