1 Commits

Author SHA1 Message Date
znetsixe
7c8722b324 changed colours and icon based on s88 2025-10-14 13:52:55 +02:00
12 changed files with 2267 additions and 162 deletions

View File

@@ -0,0 +1,57 @@
<script type="text/javascript">
RED.nodes.registerType("recirculation-pump", {
category: "WWTP",
color: "#e4a363",
defaults: {
name: { value: "" },
F2: { value: 0, required: true },
inlet: { value: 1, required: true }
},
inputs: 1,
outputs: 2,
outputLabels: ["Main effluent", "Recirculation effluent"],
icon: "font-awesome/fa-random",
label: function() {
return this.name || "Recirculation pump";
},
oneditprepare: function() {
$("#node-input-F2").typedInput({
type:"num",
types:["num"]
});
$("#node-input-inlet").typedInput({
type:"num",
types:["num"]
});
},
oneditsave: function() {
let debit = parseFloat($("#node-input-F2").typedInput("value"));
if (isNaN(debit) || debit < 0) {
RED.notify("Debit is not set correctly", {type: "error"});
}
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
if (inlet < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
<script type="text/html" data-template-name="recirculation-pump">
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
<div class="form-row">
<label for="node-input-F2"><i class="fa fa-tag"></i> Recirculation debit [m3 d-1]</label>
<input type="text" id="node-input-F2" placeholder="m3 s-1">
</div>
<div class="form-row">
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet recirculation</label>
<input type="text" id="node-input-inlet" placeholder="#">
</div>
</script>
<script type="text/html" data-help-name="recirculation-pump">
<p>Recirculation-pump for splitting streams</p>
</script>

View File

@@ -0,0 +1,40 @@
module.exports = function(RED) {
function recirculation(config) {
RED.nodes.createNode(this, config);
var node = this;
let name = config.name;
let F2 = parseFloat(config.F2);
const inlet_F2 = parseInt(config.inlet);
node.on('input', function(msg, send, done) {
switch (msg.topic) {
case "Fluent":
// conserve volume flow debit
let F_in = msg.payload.F;
let F1 = Math.max(F_in - F2, 0);
let F2_corr = F_in < F2 ? F_in : F2;
let msg_F1 = structuredClone(msg);
msg_F1.payload.F = F1;
let msg_F2 = {...msg};
msg_F2.payload.F = F2_corr;
msg_F2.payload.inlet = inlet_F2;
send([msg_F1, msg_F2]);
break;
case "clock":
break;
default:
console.log("Unknown topic: " + msg.topic);
}
if (done) {
done();
}
});
}
RED.nodes.registerType("recirculation-pump", recirculation);
};

View File

@@ -0,0 +1,57 @@
<script type="text/javascript">
RED.nodes.registerType("settling-basin", {
category: "WWTP",
color: "#e4a363",
defaults: {
name: { value: "" },
TS_set: { value: 0.1, required: true },
inlet: { value: 1, required: true }
},
inputs: 1,
outputs: 2,
outputLabels: ["Main effluent", "Sludge effluent"],
icon: "font-awesome/fa-random",
label: function() {
return this.name || "Settling basin";
},
oneditprepare: function() {
$("#node-input-TS_set").typedInput({
type:"num",
types:["num"]
});
$("#node-input-inlet").typedInput({
type:"num",
types:["num"]
});
},
oneditsave: function() {
let TS_set = parseFloat($("#node-input-TS_set").typedInput("value"));
if (isNaN(TS_set) || TS_set < 0) {
RED.notify("TS is not set correctly", {type: "error"});
}
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
if (inlet < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
}
});
</script>
<script type="text/html" data-template-name="settling-basin">
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
<div class="form-row">
<label for="node-input-TS_set"><i class="fa fa-tag"></i> Total Solids set point [g m-3]</label>
<input type="text" id="node-input-TS_set" placeholder="">
</div>
<div class="form-row">
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet return line</label>
<input type="text" id="node-input-inlet" placeholder="#">
</div>
</script>
<script type="text/html" data-help-name="settling-basin">
<p>Settling tank</p>
</script>

View File

@@ -0,0 +1,57 @@
module.exports = function(RED) {
function settler(config) {
RED.nodes.createNode(this, config);
var node = this;
let name = config.name;
let TS_set = parseFloat(config.TS_set);
const inlet_sludge = parseInt(config.inlet);
node.on('input', function(msg, send, done) {
switch (msg.topic) {
case "Fluent":
// conserve volume flow debit
let F_in = msg.payload.F;
let C_in = msg.payload.C;
let F2 = (F_in * C_in[12]) / TS_set;
let F1 = Math.max(F_in - F2, 0);
let F2_corr = F_in < F2 ? F_in : F2;
let msg_F1 = structuredClone(msg);
msg_F1.payload.F = F1;
msg_F1.payload.C[7] = 0;
msg_F1.payload.C[8] = 0;
msg_F1.payload.C[9] = 0;
msg_F1.payload.C[10] = 0;
msg_F1.payload.C[11] = 0;
msg_F1.payload.C[12] = 0;
let msg_F2 = {...msg};
msg_F2.payload.F = F2_corr;
if (F2_corr > 0) {
msg_F2.payload.C[7] = F_in * C_in[7] / F2;
msg_F2.payload.C[8] = F_in * C_in[8] / F2;
msg_F2.payload.C[9] = F_in * C_in[9] / F2;
msg_F2.payload.C[10] = F_in * C_in[10] / F2;
msg_F2.payload.C[11] = F_in * C_in[11] / F2;
msg_F2.payload.C[12] = F_in * C_in[12] / F2;
}
msg_F2.payload.inlet = inlet_sludge;
send([msg_F1, msg_F2]);
break;
case "clock":
break;
default:
console.log("Unknown topic: " + msg.topic);
}
if (done) {
done();
}
});
}
RED.nodes.registerType("settling-basin", settler);
};

1763
flows/asm3_flows.json Normal file

File diff suppressed because it is too large Load Diff

119
package-lock.json generated Normal file
View File

@@ -0,0 +1,119 @@
{
"name": "reactor",
"version": "0.0.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "reactor",
"version": "0.0.1",
"license": "SEE LICENSE",
"dependencies": {
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/RnD/generalFunctions.git",
"mathjs": "^14.5.2"
}
},
"node_modules/@babel/runtime": {
"version": "7.28.4",
"resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.28.4.tgz",
"integrity": "sha512-Q/N6JNWvIvPnLDvjlE1OUBLPQHH6l3CltCEsHIujp45zQUSSh8K+gHnaEX45yAT1nyngnINhvWtzN+Nb9D8RAQ==",
"license": "MIT",
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/complex.js": {
"version": "2.4.2",
"resolved": "https://registry.npmjs.org/complex.js/-/complex.js-2.4.2.tgz",
"integrity": "sha512-qtx7HRhPGSCBtGiST4/WGHuW+zeaND/6Ld+db6PbrulIB1i2Ev/2UPiqcmpQNPSyfBKraC0EOvOKCB5dGZKt3g==",
"license": "MIT",
"engines": {
"node": "*"
},
"funding": {
"type": "github",
"url": "https://github.com/sponsors/rawify"
}
},
"node_modules/decimal.js": {
"version": "10.6.0",
"resolved": "https://registry.npmjs.org/decimal.js/-/decimal.js-10.6.0.tgz",
"integrity": "sha512-YpgQiITW3JXGntzdUmyUR1V812Hn8T1YVXhCu+wO3OpS4eU9l4YdD3qjyiKdV6mvV29zapkMeD390UVEf2lkUg==",
"license": "MIT"
},
"node_modules/escape-latex": {
"version": "1.2.0",
"resolved": "https://registry.npmjs.org/escape-latex/-/escape-latex-1.2.0.tgz",
"integrity": "sha512-nV5aVWW1K0wEiUIEdZ4erkGGH8mDxGyxSeqPzRNtWP7ataw+/olFObw7hujFWlVjNsaDFw5VZ5NzVSIqRgfTiw==",
"license": "MIT"
},
"node_modules/fraction.js": {
"version": "5.3.4",
"resolved": "https://registry.npmjs.org/fraction.js/-/fraction.js-5.3.4.tgz",
"integrity": "sha512-1X1NTtiJphryn/uLQz3whtY6jK3fTqoE3ohKs0tT+Ujr1W59oopxmoEh7Lu5p6vBaPbgoM0bzveAW4Qi5RyWDQ==",
"license": "MIT",
"engines": {
"node": "*"
},
"funding": {
"type": "github",
"url": "https://github.com/sponsors/rawify"
}
},
"node_modules/generalFunctions": {
"version": "1.0.0",
"resolved": "git+https://gitea.centraal.wbd-rd.nl/RnD/generalFunctions.git#efc97d6cd17399391b011298e47e8c1b1599592d",
"license": "SEE LICENSE"
},
"node_modules/javascript-natural-sort": {
"version": "0.7.1",
"resolved": "https://registry.npmjs.org/javascript-natural-sort/-/javascript-natural-sort-0.7.1.tgz",
"integrity": "sha512-nO6jcEfZWQXDhOiBtG2KvKyEptz7RVbpGP4vTD2hLBdmNQSsCiicO2Ioinv6UI4y9ukqnBpy+XZ9H6uLNgJTlw==",
"license": "MIT"
},
"node_modules/mathjs": {
"version": "14.8.0",
"resolved": "https://registry.npmjs.org/mathjs/-/mathjs-14.8.0.tgz",
"integrity": "sha512-DN4wmAjNzFVJ9vHqpAJ3vX0UF306u/1DgGKh7iVPuAFH19JDRd9NAaQS764MsKbSwDB6uBSkQEmgVmKdgYaCoQ==",
"license": "Apache-2.0",
"dependencies": {
"@babel/runtime": "^7.26.10",
"complex.js": "^2.2.5",
"decimal.js": "^10.4.3",
"escape-latex": "^1.2.0",
"fraction.js": "^5.2.1",
"javascript-natural-sort": "^0.7.1",
"seedrandom": "^3.0.5",
"tiny-emitter": "^2.1.0",
"typed-function": "^4.2.1"
},
"bin": {
"mathjs": "bin/cli.js"
},
"engines": {
"node": ">= 18"
}
},
"node_modules/seedrandom": {
"version": "3.0.5",
"resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-3.0.5.tgz",
"integrity": "sha512-8OwmbklUNzwezjGInmZ+2clQmExQPvomqjL7LFqOYqtmuxRgQYqOD3mHaU+MvZn5FLUeVxVfQjwLZW/n/JFuqg==",
"license": "MIT"
},
"node_modules/tiny-emitter": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/tiny-emitter/-/tiny-emitter-2.1.0.tgz",
"integrity": "sha512-NB6Dk1A9xgQPMoGqC5CVXn123gWyte215ONT5Pp5a0yt4nlEoO1ZWeCwpncaekPHXO60i47ihFnZPiRPjRMq4Q==",
"license": "MIT"
},
"node_modules/typed-function": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/typed-function/-/typed-function-4.2.1.tgz",
"integrity": "sha512-EGjWssW7Tsk4DGfE+5yluuljS1OGYWiI1J6e8puZz9nTMM51Oug8CD5Zo4gWMsOhq5BI+1bF+rWTm4Vbj3ivRA==",
"license": "MIT",
"engines": {
"node": ">= 18"
}
}
}
}

View File

@@ -11,7 +11,6 @@
"activated sludge", "activated sludge",
"wastewater", "wastewater",
"biological model", "biological model",
"EVOLV",
"node-red" "node-red"
], ],
"license": "SEE LICENSE", "license": "SEE LICENSE",
@@ -22,7 +21,9 @@
}, },
"node-red": { "node-red": {
"nodes": { "nodes": {
"reactor": "reactor.js" "reactor": "reactor.js",
"recirculation-pump": "additional_nodes/recirculation-pump.js",
"settling-basin": "additional_nodes/settling-basin.js"
} }
}, },
"dependencies": { "dependencies": {

View File

@@ -1,15 +1,27 @@
<!--
| S88-niveau | Primair (blokkleur) | Tekstkleur |
| ---------------------- | ------------------- | ---------- |
| **Area** | `#0f52a5` | wit |
| **Process Cell** | `#0c99d9` | wit |
| **Unit** | `#50a8d9` | zwart |
| **Equipment (Module)** | `#86bbdd` | zwart |
| **Control Module** | `#a9daee` | zwart |
-->
<script src="/reactor/menu.js"></script> <script src="/reactor/menu.js"></script>
<script type="text/javascript"> <script type="text/javascript">
RED.nodes.registerType("reactor", { RED.nodes.registerType("reactor", {
category: "EVOLV", category: "EVOLV",
color: "#c4cce0", color: "#50a8d9",
defaults: { defaults: {
name: { value: "" }, name: { value: "" },
reactor_type: { value: "CSTR", required: true }, reactor_type: { value: "CSTR", required: true },
volume: { value: 0., required: true }, volume: { value: 0., required: true },
length: { value: 0.}, length: { value: 0.},
resolution_L: { value: 0.}, resolution_L: { value: 0.},
alpha: {value: 0},
n_inlets: { value: 1, required: true},
kla: { value: null }, kla: { value: null },
S_O_init: { value: 0., required: true }, S_O_init: { value: 0., required: true },
@@ -37,7 +49,7 @@
outputs: 3, outputs: 3,
inputLabels: ["input"], inputLabels: ["input"],
outputLabels: ["process", "dbase", "parent"], outputLabels: ["process", "dbase", "parent"],
icon: "font-awesome/fa-recycle", icon: "font-awesome/fa-flask",
label: function() { label: function() {
return this.name || "Reactor"; return this.name || "Reactor";
}, },
@@ -56,6 +68,10 @@
type:"num", type:"num",
types:["num"] types:["num"]
}); });
$("#node-input-n_inlets").typedInput({
type:"num",
types:["num"]
});
$("#node-input-length").typedInput({ $("#node-input-length").typedInput({
type:"num", type:"num",
types:["num"] types:["num"]
@@ -91,6 +107,10 @@
$(".PFR").show(); $(".PFR").show();
} }
}); });
$("#node-input-alpha").typedInput({
type:"num",
types:["num"]
})
$("#node-input-timeStep").typedInput({ $("#node-input-timeStep").typedInput({
type:"num", type:"num",
types:["num"] types:["num"]
@@ -118,6 +138,10 @@
if (isNaN(volume) || volume <= 0) { if (isNaN(volume) || volume <= 0) {
RED.notify("Fluid volume not set correctly", {type: "error"}); RED.notify("Fluid volume not set correctly", {type: "error"});
} }
let n_inlets = parseInt($("#node-input-n_inlets").typedInput("value"));
if (isNaN(n_inlets) || n_inlets < 1) {
RED.notify("Number of inlets not set correctly", {type: "error"});
}
} }
}); });
</script> </script>
@@ -144,6 +168,17 @@
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label> <label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label>
<input type="text" id="node-input-resolution_L" placeholder="#"> <input type="text" id="node-input-resolution_L" placeholder="#">
</div> </div>
<div class="PFR">
<p> Inlet boundary condition parameter &alpha; (&alpha; = 0: Danckwerts BC / &alpha; = 1: Dirichlet BC) </p>
<div class="form-row">
<label for="node-input-alpha"><i class="fa fa-tag"></i>Adjustable parameter BC</label>
<input type="text" id="node-input-alpha">
</div>
</div>
<div class="form-row">
<label for="node-input-n_inlets"><i class="fa fa-tag"></i> Number of inlets</label>
<input type="text" id="node-input-n_inlets" placeholder="#">
</div>
<h3> Internal mass transfer calculation (optional) </h3> <h3> Internal mass transfer calculation (optional) </h3>
<div class="form-row"> <div class="form-row">
<label for="node-input-kla"><i class="fa fa-tag"></i> kLa [d-1]</label> <label for="node-input-kla"><i class="fa fa-tag"></i> kLa [d-1]</label>
@@ -215,6 +250,7 @@
<!-- Position fields will be injected here --> <!-- Position fields will be injected here -->
<div id="position-fields-placeholder"></div> <div id="position-fields-placeholder"></div>
</script> </script>
<script type="text/html" data-help-name="reactor"> <script type="text/html" data-help-name="reactor">

View File

@@ -87,6 +87,8 @@ class nodeClass {
volume: parseFloat(uiConfig.volume), volume: parseFloat(uiConfig.volume),
length: parseFloat(uiConfig.length), length: parseFloat(uiConfig.length),
resolution_L: parseInt(uiConfig.resolution_L), resolution_L: parseInt(uiConfig.resolution_L),
alpha: parseFloat(uiConfig.alpha),
n_inlets: parseInt(uiConfig.n_inlets),
kla: parseFloat(uiConfig.kla), kla: parseFloat(uiConfig.kla),
initialState: [ initialState: [
parseFloat(uiConfig.S_O_init), parseFloat(uiConfig.S_O_init),

View File

@@ -1,9 +1,4 @@
const math = require('mathjs'); const math = require('mathjs')
const ASM_CONSTANTS = {
S_O_INDEX: 0,
NUM_SPECIES: 13
};
/** /**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters. * ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
@@ -213,4 +208,4 @@ class ASM3 {
} }
} }
module.exports = { ASM3, ASM_CONSTANTS }; module.exports = ASM3;

View File

@@ -1,9 +1,4 @@
const math = require('mathjs'); const math = require('mathjs')
const ASM_CONSTANTS = {
S_O_INDEX: 0,
NUM_SPECIES: 13
};
/** /**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). * ASM3 class for the Activated Sludge Model No. 3 (ASM3).
@@ -213,4 +208,4 @@ class ASM3 {
} }
} }
module.exports = { ASM3, ASM_CONSTANTS }; module.exports = ASM3;

View File

@@ -1,4 +1,4 @@
const { ASM3, ASM_CONSTANTS } = require('./reaction_modules/asm3_class.js'); const ASM3 = require('./reaction_modules/asm3_class.js');
const { create, all, isArray } = require('mathjs'); const { create, all, isArray } = require('mathjs');
const { assertNoNaN } = require('./utils.js'); const { assertNoNaN } = require('./utils.js');
const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions'); const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions');
@@ -10,9 +10,9 @@ const mathConfig = {
const math = create(all, mathConfig); const math = create(all, mathConfig);
const BC_PADDING = 2; const S_O_INDEX = 0;
const NUM_SPECIES = 13;
const DEBUG = false; const DEBUG = false;
const DAY2MS = 1000 * 60 * 60 * 24;
class Reactor { class Reactor {
/** /**
@@ -25,18 +25,15 @@ class Reactor {
this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name); this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name);
this.emitter = new EventEmitter(); this.emitter = new EventEmitter();
this.measurements = new MeasurementContainer(); this.measurements = new MeasurementContainer();
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
this.upstreamReactor = null; this.upstreamReactor = null;
this.downstreamReactor = null; this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
this.returnPump = null;
this.asm = new ASM3(); this.asm = new ASM3();
this.volume = config.volume; // fluid volume reactor [m3] this.volume = config.volume; // fluid volume reactor [m3]
this.Fs = [0]; // fluid debits per inlet [m3 d-1] this.Fs = Array(config.n_inlets).fill(0); // fluid debits per inlet [m3 d-1]
this.Cs_in = [Array(ASM_CONSTANTS.NUM_SPECIES).fill(0)]; // composition influents this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(NUM_SPECIES).fill(0)); // composition influents
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1 m-3] this.OTR = 0.0; // oxygen transfer rate [g O2 d-1 m-3]
this.temperature = 20; // temperature [C] this.temperature = 20; // temperature [C]
@@ -44,7 +41,7 @@ class Reactor {
this.currentTime = Date.now(); // milliseconds since epoch [ms] this.currentTime = Date.now(); // milliseconds since epoch [ms]
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step in seconds, converted to days. this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step in seconds, converted to days.
this.speedUpFactor = 100; // speed up factor for simulation, 60 means 1 minute per simulated second this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second
} }
/** /**
@@ -52,15 +49,9 @@ class Reactor {
* @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations. * @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
*/ */
set setInfluent(input) { set setInfluent(input) {
const i_in = input.payload.inlet; let index_in = input.payload.inlet;
if (this.Fs.length <= i_in) { this.Fs[index_in] = input.payload.F;
this.logger.debug(`Adding new inlet index ${i_in}.`); this.Cs_in[index_in] = input.payload.C;
this.Fs.push(0);
this.Cs_in.push(Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
this.setInfluent = input;
}
this.Fs[i_in] = input.payload.F;
this.Cs_in[i_in] = input.payload.C;
} }
/** /**
@@ -73,20 +64,13 @@ class Reactor {
/** /**
* Getter for effluent data. * Getter for effluent data.
* @returns {object} Effluent data object (msg). * @returns {object} Effluent data object (msg), defaults to inlet 0.
*/ */
get getEffluent() { get getEffluent() { // getter for Effluent, defaults to inlet 0
const Cs = isArray(this.state.at(-1)) ? this.state.at(-1) : this.state; if (isArray(this.state.at(-1))) {
const effluent = [{ topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: Cs }, timestamp: this.currentTime }]; return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state.at(-1) }, timestamp: this.currentTime };
if (this.returnPump) {
const recirculationFlow = this.returnPump.measurements.type("flow").variant("measured").position("atEquipment").getCurrentValue();
// constrain flow to prevent negatives
const F_main = Math.max(effluent[0].payload.F - recirculationFlow, 0);
const F_sidestream = effluent[0].payload.F < recirculationFlow ? effluent[0].payload.F : recirculationFlow;
effluent[0].payload.F = F_main;
effluent.push({ topic: "Fluent", payload: { inlet: 1, F: F_sidestream, C: Cs }, timestamp: this.currentTime });
} }
return effluent; return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state }, timestamp: this.currentTime };
} }
/** /**
@@ -96,7 +80,7 @@ class Reactor {
* @returns {number} - Calculated OTR [g O2 d-1 m-3]. * @returns {number} - Calculated OTR [g O2 d-1 m-3].
*/ */
_calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C _calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
const S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T; let S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
return this.kla * (S_O_sat - S_O); return this.kla * (S_O_sat - S_O);
} }
@@ -114,37 +98,39 @@ class Reactor {
} }
registerChild(child, softwareType) { registerChild(child, softwareType) {
if(!child) {
this.logger.error(`Invalid ${softwareType} child provided.`);
return;
}
switch (softwareType) { switch (softwareType) {
case "measurement": case "measurement":
this.logger.debug(`Registering measurement child...`); this.logger.debug(`Registering measurement child.`);
this._connectMeasurement(child); this._connectMeasurement(child);
break; break;
case "reactor": case "reactor":
this.logger.debug(`Registering reactor child...`); this.logger.debug(`Registering reactor child.`);
this._connectReactor(child); this._connectReactor(child);
break; break;
case "machine":
this.logger.debug(`Registering machine child...`);
this._connectMachine(child);
break;
default: default:
this.logger.error(`Unrecognized softwareType: ${softwareType}`); this.logger.error(`Unrecognized softwareType: ${softwareType}`);
} }
} }
_connectMeasurement(measurementChild) { _connectMeasurement(measurement) {
const position = measurementChild.config.functionality.positionVsParent; if (!measurement) {
const measurementType = measurementChild.config.asset.type; this.logger.warn("Invalid measurement provided.");
return;
}
let position;
if (measurement.config.functionality.distance !== 'undefined') {
position = measurement.config.functionality.distance;
} else {
position = measurement.config.functionality.positionVsParent;
}
const measurementType = measurement.config.asset.type;
const key = `${measurementType}_${position}`;
const eventName = `${measurementType}.measured.${position}`; const eventName = `${measurementType}.measured.${position}`;
// Register event listener for measurement updates // Register event listener for measurement updates
measurementChild.measurements.emitter.on(eventName, (eventData) => { measurement.measurements.emitter.on(eventName, (eventData) => {
this.logger.debug(`${position} ${measurementType} from ${eventData.childName}: ${eventData.value} ${eventData.unit}`); this.logger.debug(`${position} ${measurementType} from ${eventData.childName}: ${eventData.value} ${eventData.unit}`);
// Store directly in parent's measurement container // Store directly in parent's measurement container
@@ -159,31 +145,20 @@ class Reactor {
} }
_connectReactor(reactorChild) { _connectReactor(reactor) {
if (reactorChild.config.functionality.positionVsParent != "upstream") { if (!reactor) {
this.logger.warn("Reactor children of reactors should always be upstream."); this.logger.warn("Invalid reactor provided.");
return;
} }
if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) { this.upstreamReactor = reactor;
this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
}
// set upstream and downstream reactor variable in current and child nodes respectively for easy access reactor.emitter.on("stateChange", (data) => {
this.upstreamReactor = reactorChild;
reactorChild.downstreamReactor = this;
reactorChild.emitter.on("stateChange", (eventData) => {
this.logger.debug(`State change of upstream reactor detected.`); this.logger.debug(`State change of upstream reactor detected.`);
this.updateState(eventData); this.updateState(data);
}); });
} }
_connectMachine(machineChild) {
if (machineChild.config.functionality.positionVsParent == "downstream") {
machineChild.upstreamSource = this;
this.returnPump = machineChild;
}
}
_updateMeasurement(measurementType, value, position, context) { _updateMeasurement(measurementType, value, position, context) {
this.logger.debug(`---------------------- updating ${measurementType} ------------------ `); this.logger.debug(`---------------------- updating ${measurementType} ------------------ `);
@@ -204,18 +179,20 @@ class Reactor {
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch. * @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/ */
updateState(newTime = Date.now()) { // expect update with timestamp updateState(newTime = Date.now()) { // expect update with timestamp
const day2ms = 1000 * 60 * 60 * 24;
if (this.upstreamReactor) { if (this.upstreamReactor) {
this.setInfluent = this.upstreamReactor.getEffluent[0]; // grab main effluent upstream reactor this.setInfluent = this.upstreamReactor.getEffluent;
} }
const n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*DAY2MS)); let n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*day2ms));
if (n_iter) { if (n_iter) {
let n = 0; let n = 0;
while (n < n_iter) { while (n < n_iter) {
this.tick(this.timeStep); this.tick(this.timeStep);
n += 1; n += 1;
} }
this.currentTime += n_iter * this.timeStep * DAY2MS / this.speedUpFactor; this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
this.emitter.emit("stateChange", this.currentTime); this.emitter.emit("stateChange", this.currentTime);
} }
} }
@@ -240,8 +217,8 @@ class Reactor_CSTR extends Reactor {
const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0]; const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0];
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state); const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
const reaction = this.asm.compute_dC(this.state, this.temperature); const reaction = this.asm.compute_dC(this.state, this.temperature);
const transfer = Array(ASM_CONSTANTS.NUM_SPECIES).fill(0.0); const transfer = Array(NUM_SPECIES).fill(0.0);
transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR transfer[S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step) const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
@@ -267,15 +244,13 @@ class Reactor_PFR extends Reactor {
this.d_x = this.length / this.n_x; this.d_x = this.length / this.n_x;
this.A = this.volume / this.length; // crosssectional area [m2] this.A = this.volume / this.length; // crosssectional area [m2]
this.state = Array.from(Array(this.n_x), () => config.initialState.slice()); this.alpha = config.alpha;
this.extendedState = Array.from(Array(this.n_x + 2*BC_PADDING), () => new Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
// initialise extended state this.state = Array.from(Array(this.n_x), () => config.initialState.slice())
this.state.forEach((row, i) => this.extendedState[i+BC_PADDING] = row);
this.D = 0.0; // axial dispersion [m2 d-1] this.D = 0.0; // axial dispersion [m2 d-1]
this.D_op = this._makeDoperator(); this.D_op = this._makeDoperator(true, true);
assertNoNaN(this.D_op, "Derivative operator"); assertNoNaN(this.D_op, "Derivative operator");
this.D2_op = this._makeD2operator(); this.D2_op = this._makeD2operator();
@@ -287,16 +262,15 @@ class Reactor_PFR extends Reactor {
* @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1]. * @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1].
*/ */
set setDispersion(input) { set setDispersion(input) {
this.D = this._constrainDispersion(input.payload); this.D = input.payload;
} }
updateState(newTime) { updateState(newTime) {
super.updateState(newTime); super.updateState(newTime);
// let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A) let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
this.D = this._constrainDispersion(this.D); let Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
const Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
// (Pe_local >= 2) && this.logger.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`); (Pe_local >= 2) && this.logger.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
(Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`); (Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
if(DEBUG) { if(DEBUG) {
@@ -314,26 +288,25 @@ class Reactor_PFR extends Reactor {
* @returns {Array} - New reactor state. * @returns {Array} - New reactor state.
*/ */
tick(time_step) { tick(time_step) {
this._applyBoundaryConditions(); const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.state);
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.extendedState); const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.extendedState); const transfer = Array.from(Array(this.n_x), () => new Array(NUM_SPECIES).fill(0));
const reaction = this.extendedState.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
const transfer = Array.from(Array(this.n_x+2*BC_PADDING), () => new Array(ASM_CONSTANTS.NUM_SPECIES).fill(0));
if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) { for (let i = 1; i < this.n_x - 1; i++) {
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2); transfer[i][S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
} }
} else { } else {
for (let i = BC_PADDING+1; i < BC_PADDING+this.n_x - 1; i++) { for (let i = 1; i < this.n_x - 1; i++) {
transfer[i][ASM_CONSTANTS.S_O_INDEX] = this._calcOTR(this.extendedState[i][ASM_CONSTANTS.S_O_INDEX], this.temperature) * this.n_x/(this.n_x-2); transfer[i][S_O_INDEX] = this._calcOTR(this.state[i][S_O_INDEX], this.temperature) * this.n_x/(this.n_x-2);
} }
} }
const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer).slice(BC_PADDING, this.n_x+BC_PADDING), time_step); const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step);
const stateNew = math.add(this.state, dC_total); const stateNew = math.add(this.state, dC_total);
this._applyBoundaryConditions(stateNew);
if (DEBUG) { if (DEBUG) {
assertNoNaN(dispersion, "dispersion"); assertNoNaN(dispersion, "dispersion");
@@ -344,15 +317,14 @@ class Reactor_PFR extends Reactor {
} }
this.state = this._arrayClip2Zero(stateNew); this.state = this._arrayClip2Zero(stateNew);
this.state.forEach((row, i) => this.extendedState[i+BC_PADDING] = row);
return stateNew; return stateNew;
} }
_updateMeasurement(measurementType, value, position, context) { _updateMeasurement(measurementType, value, position, context) {
switch(measurementType) { switch(measurementType) {
case "quantity (oxygen)": case "quantity (oxygen)":
const grid_pos = Math.round(context.distance / this.config.length * this.n_x); let grid_pos = Math.round(position / this.config.length * this.n_x);
this.state[grid_pos][0] = value; // naive approach for reconciling measurements and simulation this.state[grid_pos][S_O_INDEX] = value; // naive approach for reconciling measurements and simulation
break; break;
default: default:
super._updateMeasurement(measurementType, value, position, context); super._updateMeasurement(measurementType, value, position, context);
@@ -363,49 +335,57 @@ class Reactor_PFR extends Reactor {
* Apply boundary conditions to the reactor state. * Apply boundary conditions to the reactor state.
* for inlet, apply generalised Danckwerts BC, if there is not flow, apply Neumann BC with no flux * for inlet, apply generalised Danckwerts BC, if there is not flow, apply Neumann BC with no flux
* for outlet, apply regular Danckwerts BC (Neumann BC with no flux) * for outlet, apply regular Danckwerts BC (Neumann BC with no flux)
* @param {Array} state - Current reactor state without enforced BCs.
*/ */
_applyBoundaryConditions() { _applyBoundaryConditions(state) {
// Upstream BC if (math.sum(this.Fs) > 0) { // Danckwerts BC
if (this.upstreamReactor) { const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
// Open boundary const BC_dispersion_term = (1-this.alpha)*this.D*this.A/(math.sum(this.Fs)*this.d_x);
this.extendedState.splice(0, BC_PADDING, ...this.upstreamReactor.state.slice(-BC_PADDING)); state[0] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, state[1])));
} else { } else {
if (math.sum(this.Fs) > 0) { state[0] = state[1];
// Danckwerts BC
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
const BC_dispersion_term = this.D*this.A/(math.sum(this.Fs)*this.d_x);
this.extendedState[BC_PADDING] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, this.extendedState[BC_PADDING+1])));
this.extendedState[BC_PADDING-1] = math.add(math.multiply(2, this.extendedState[BC_PADDING]), math.multiply(-2, this.extendedState[BC_PADDING+2]), this.extendedState[BC_PADDING+3]);
} else {
// Neumann BC (no flux)
this.extendedState.fill(this.extendedState[BC_PADDING], 0, BC_PADDING);
}
}
// Downstream BC
if (this.downstreamReactor) {
// Open boundary
this.extendedState.splice(this.n_x+BC_PADDING, BC_PADDING, ...this.downstreamReactor.state.slice(0, BC_PADDING));
} else {
// Neumann BC (no flux)
this.extendedState.fill(this.extendedState.at(-1-BC_PADDING), BC_PADDING+this.n_x);
} }
// Neumann BC (no flux)
state[this.n_x-1] = state[this.n_x-2];
} }
/** /**
* Create finite difference first derivative operator. * Create finite difference first derivative operator.
* @param {boolean} central - Use central difference scheme if true, otherwise use upwind scheme.
* @param {boolean} higher_order - Use higher order scheme if true, otherwise use first order scheme.
* @returns {Array} - First derivative operator matrix. * @returns {Array} - First derivative operator matrix.
*/ */
_makeDoperator() { // create gradient operator _makeDoperator(central = false, higher_order = false) { // create gradient operator
const D_size = this.n_x+2*BC_PADDING; if (higher_order) {
const I = math.resize(math.diag(Array(D_size).fill(1/12), -2), [D_size, D_size]); if (central) {
const A = math.resize(math.diag(Array(D_size).fill(-2/3), -1), [D_size, D_size]); const I = math.resize(math.diag(Array(this.n_x).fill(1/12), -2), [this.n_x, this.n_x]);
const B = math.resize(math.diag(Array(D_size).fill(2/3), 1), [D_size, D_size]); const A = math.resize(math.diag(Array(this.n_x).fill(-2/3), -1), [this.n_x, this.n_x]);
const C = math.resize(math.diag(Array(D_size).fill(-1/12), 2), [D_size, D_size]); const B = math.resize(math.diag(Array(this.n_x).fill(2/3), 1), [this.n_x, this.n_x]);
const D = math.add(I, A, B, C); const C = math.resize(math.diag(Array(this.n_x).fill(-1/12), 2), [this.n_x, this.n_x]);
// set by BCs elsewhere const D = math.add(I, A, B, C);
D.forEach((row, i) => i < BC_PADDING || i >= this.n_x+BC_PADDING ? row.fill(0) : row); const NearBoundary = Array(this.n_x).fill(0.0);
return D; NearBoundary[0] = -1/4;
NearBoundary[1] = -5/6;
NearBoundary[2] = 3/2;
NearBoundary[3] = -1/2;
NearBoundary[4] = 1/12;
D[1] = NearBoundary;
NearBoundary.reverse();
D[this.n_x-2] = math.multiply(-1, NearBoundary);
D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
D[this.n_x-1] = Array(this.n_x).fill(0);
return D;
} else {
throw new Error("Upwind higher order method not implemented! Use central scheme instead.");
}
} else {
const I = math.resize(math.diag(Array(this.n_x).fill(1 / (1+central)), central), [this.n_x, this.n_x]);
const A = math.resize(math.diag(Array(this.n_x).fill(-1 / (1+central)), -1), [this.n_x, this.n_x]);
const D = math.add(I, A);
D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
D[this.n_x-1] = Array(this.n_x).fill(0);
return D;
}
} }
/** /**
@@ -413,24 +393,27 @@ class Reactor_PFR extends Reactor {
* @returns {Array} - Second derivative operator matrix. * @returns {Array} - Second derivative operator matrix.
*/ */
_makeD2operator() { // create the central second derivative operator _makeD2operator() { // create the central second derivative operator
const D_size = this.n_x+2*BC_PADDING; const I = math.diag(Array(this.n_x).fill(-2), 0);
const I = math.diag(Array(D_size).fill(-2), 0); const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]);
const A = math.resize(math.diag(Array(D_size).fill(1), 1), [D_size, D_size]); const B = math.resize(math.diag(Array(this.n_x).fill(1), -1), [this.n_x, this.n_x]);
const B = math.resize(math.diag(Array(D_size).fill(1), -1), [D_size, D_size]);
const D2 = math.add(I, A, B); const D2 = math.add(I, A, B);
// set by BCs elsewhere D2[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
D2.forEach((row, i) => i < BC_PADDING || i >= this.n_x+BC_PADDING ? row.fill(0) : row); D2[this.n_x - 1] = Array(this.n_x).fill(0);
return D2; return D2;
} }
_constrainDispersion(D) {
const Dmin = math.sum(this.Fs) * this.d_x / (1.999 * this.A);
if (D < Dmin) {
this.logger.warn(`Local Péclet number too high! Constraining given dispersion (${D}) to minimal value (${Dmin}).`);
return Dmin;
}
return D;
}
} }
module.exports = { Reactor_CSTR, Reactor_PFR }; module.exports = { Reactor_CSTR, Reactor_PFR };
// DEBUG
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
// const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state);
// Reactor.Cs_in[0] = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.];
// Reactor.Fs[0] = 10;
// Reactor.D = 0.01;
// let N = 0;
// while (N < 5000) {
// console.log(Reactor.tick(0.001));
// N += 1;
// }