Resolve merge conflicts from migration
This commit is contained in:
136
.gitignore
vendored
Normal file
136
.gitignore
vendored
Normal file
@@ -0,0 +1,136 @@
|
||||
# Logs
|
||||
logs
|
||||
*.log
|
||||
npm-debug.log*
|
||||
yarn-debug.log*
|
||||
yarn-error.log*
|
||||
lerna-debug.log*
|
||||
.pnpm-debug.log*
|
||||
|
||||
# Diagnostic reports (https://nodejs.org/api/report.html)
|
||||
report.[0-9]*.[0-9]*.[0-9]*.[0-9]*.json
|
||||
|
||||
# Runtime data
|
||||
pids
|
||||
*.pid
|
||||
*.seed
|
||||
*.pid.lock
|
||||
|
||||
# Directory for instrumented libs generated by jscoverage/JSCover
|
||||
lib-cov
|
||||
|
||||
# Coverage directory used by tools like istanbul
|
||||
coverage
|
||||
*.lcov
|
||||
|
||||
# nyc test coverage
|
||||
.nyc_output
|
||||
|
||||
# Grunt intermediate storage (https://gruntjs.com/creating-plugins#storing-task-files)
|
||||
.grunt
|
||||
|
||||
# Bower dependency directory (https://bower.io/)
|
||||
bower_components
|
||||
|
||||
# node-waf configuration
|
||||
.lock-wscript
|
||||
|
||||
# Compiled binary addons (https://nodejs.org/api/addons.html)
|
||||
build/Release
|
||||
|
||||
# Dependency directories
|
||||
node_modules/
|
||||
jspm_packages/
|
||||
|
||||
# Snowpack dependency directory (https://snowpack.dev/)
|
||||
web_modules/
|
||||
|
||||
# TypeScript cache
|
||||
*.tsbuildinfo
|
||||
|
||||
# Optional npm cache directory
|
||||
.npm
|
||||
|
||||
# Optional eslint cache
|
||||
.eslintcache
|
||||
|
||||
# Optional stylelint cache
|
||||
.stylelintcache
|
||||
|
||||
# Microbundle cache
|
||||
.rpt2_cache/
|
||||
.rts2_cache_cjs/
|
||||
.rts2_cache_es/
|
||||
.rts2_cache_umd/
|
||||
|
||||
# Optional REPL history
|
||||
.node_repl_history
|
||||
|
||||
# Output of 'npm pack'
|
||||
*.tgz
|
||||
|
||||
# Yarn Integrity file
|
||||
.yarn-integrity
|
||||
|
||||
# dotenv environment variable files
|
||||
.env
|
||||
.env.development.local
|
||||
.env.test.local
|
||||
.env.production.local
|
||||
.env.local
|
||||
|
||||
# parcel-bundler cache (https://parceljs.org/)
|
||||
.cache
|
||||
.parcel-cache
|
||||
|
||||
# Next.js build output
|
||||
.next
|
||||
out
|
||||
|
||||
# Nuxt.js build / generate output
|
||||
.nuxt
|
||||
dist
|
||||
|
||||
# Gatsby files
|
||||
.cache/
|
||||
# Comment in the public line in if your project uses Gatsby and not Next.js
|
||||
# https://nextjs.org/blog/next-9-1#public-directory-support
|
||||
# public
|
||||
|
||||
# vuepress build output
|
||||
.vuepress/dist
|
||||
|
||||
# vuepress v2.x temp and cache directory
|
||||
.temp
|
||||
.cache
|
||||
|
||||
# vitepress build output
|
||||
**/.vitepress/dist
|
||||
|
||||
# vitepress cache directory
|
||||
**/.vitepress/cache
|
||||
|
||||
# Docusaurus cache and generated files
|
||||
.docusaurus
|
||||
|
||||
# Serverless directories
|
||||
.serverless/
|
||||
|
||||
# FuseBox cache
|
||||
.fusebox/
|
||||
|
||||
# DynamoDB Local files
|
||||
.dynamodb/
|
||||
|
||||
# TernJS port file
|
||||
.tern-port
|
||||
|
||||
# Stores VSCode versions used for testing VSCode extensions
|
||||
.vscode-test
|
||||
|
||||
# yarn v2
|
||||
.yarn/cache
|
||||
.yarn/unplugged
|
||||
.yarn/build-state.yml
|
||||
.yarn/install-state.gz
|
||||
.pnp.*
|
||||
@@ -14,3 +14,4 @@ Real-time Kinetics: Continuous biological reaction rate calculations with config
|
||||
Weighted Averaging: Volume-based concentration mixing for accurate mass balance calculations
|
||||
Child Registration: Integration with diffuser systems and upstream/downstream reactor networks
|
||||
Supports complex biological treatment train modeling with temperature compensation, sludge calculations, and comprehensive process monitoring for wastewater treatment plant optimization and regulatory compliance.
|
||||
|
||||
|
||||
57
additional_nodes/recirculation-pump.html
Normal file
57
additional_nodes/recirculation-pump.html
Normal file
@@ -0,0 +1,57 @@
|
||||
<script type="text/javascript">
|
||||
RED.nodes.registerType("recirculation-pump", {
|
||||
category: "WWTP",
|
||||
color: "#e4a363",
|
||||
defaults: {
|
||||
name: { value: "" },
|
||||
F2: { value: 0, required: true },
|
||||
inlet: { value: 1, required: true }
|
||||
},
|
||||
inputs: 1,
|
||||
outputs: 2,
|
||||
outputLabels: ["Main effluent", "Recirculation effluent"],
|
||||
icon: "font-awesome/fa-random",
|
||||
label: function() {
|
||||
return this.name || "Recirculation pump";
|
||||
},
|
||||
oneditprepare: function() {
|
||||
$("#node-input-F2").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-inlet").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
},
|
||||
oneditsave: function() {
|
||||
let debit = parseFloat($("#node-input-F2").typedInput("value"));
|
||||
if (isNaN(debit) || debit < 0) {
|
||||
RED.notify("Debit is not set correctly", {type: "error"});
|
||||
}
|
||||
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
|
||||
if (inlet < 1) {
|
||||
RED.notify("Number of inlets not set correctly", {type: "error"});
|
||||
}
|
||||
}
|
||||
});
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-template-name="recirculation-pump">
|
||||
<div class="form-row">
|
||||
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
|
||||
<input type="text" id="node-input-name" placeholder="Name">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-F2"><i class="fa fa-tag"></i> Recirculation debit [m3 d-1]</label>
|
||||
<input type="text" id="node-input-F2" placeholder="m3 s-1">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet recirculation</label>
|
||||
<input type="text" id="node-input-inlet" placeholder="#">
|
||||
</div>
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-help-name="recirculation-pump">
|
||||
<p>Recirculation-pump for splitting streams</p>
|
||||
</script>
|
||||
40
additional_nodes/recirculation-pump.js
Normal file
40
additional_nodes/recirculation-pump.js
Normal file
@@ -0,0 +1,40 @@
|
||||
module.exports = function(RED) {
|
||||
function recirculation(config) {
|
||||
RED.nodes.createNode(this, config);
|
||||
var node = this;
|
||||
|
||||
let name = config.name;
|
||||
let F2 = parseFloat(config.F2);
|
||||
const inlet_F2 = parseInt(config.inlet);
|
||||
|
||||
node.on('input', function(msg, send, done) {
|
||||
switch (msg.topic) {
|
||||
case "Fluent":
|
||||
// conserve volume flow debit
|
||||
let F_in = msg.payload.F;
|
||||
let F1 = Math.max(F_in - F2, 0);
|
||||
let F2_corr = F_in < F2 ? F_in : F2;
|
||||
|
||||
let msg_F1 = structuredClone(msg);
|
||||
msg_F1.payload.F = F1;
|
||||
|
||||
let msg_F2 = {...msg};
|
||||
msg_F2.payload.F = F2_corr;
|
||||
msg_F2.payload.inlet = inlet_F2;
|
||||
|
||||
send([msg_F1, msg_F2]);
|
||||
break;
|
||||
case "clock":
|
||||
break;
|
||||
default:
|
||||
console.log("Unknown topic: " + msg.topic);
|
||||
}
|
||||
|
||||
if (done) {
|
||||
done();
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
RED.nodes.registerType("recirculation-pump", recirculation);
|
||||
};
|
||||
57
additional_nodes/settling-basin.html
Normal file
57
additional_nodes/settling-basin.html
Normal file
@@ -0,0 +1,57 @@
|
||||
<script type="text/javascript">
|
||||
RED.nodes.registerType("settling-basin", {
|
||||
category: "WWTP",
|
||||
color: "#e4a363",
|
||||
defaults: {
|
||||
name: { value: "" },
|
||||
TS_set: { value: 0.1, required: true },
|
||||
inlet: { value: 1, required: true }
|
||||
},
|
||||
inputs: 1,
|
||||
outputs: 2,
|
||||
outputLabels: ["Main effluent", "Sludge effluent"],
|
||||
icon: "font-awesome/fa-random",
|
||||
label: function() {
|
||||
return this.name || "Settling basin";
|
||||
},
|
||||
oneditprepare: function() {
|
||||
$("#node-input-TS_set").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-inlet").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
},
|
||||
oneditsave: function() {
|
||||
let TS_set = parseFloat($("#node-input-TS_set").typedInput("value"));
|
||||
if (isNaN(TS_set) || TS_set < 0) {
|
||||
RED.notify("TS is not set correctly", {type: "error"});
|
||||
}
|
||||
let inlet = parseInt($("#node-input-n_inlets").typedInput("value"));
|
||||
if (inlet < 1) {
|
||||
RED.notify("Number of inlets not set correctly", {type: "error"});
|
||||
}
|
||||
}
|
||||
});
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-template-name="settling-basin">
|
||||
<div class="form-row">
|
||||
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
|
||||
<input type="text" id="node-input-name" placeholder="Name">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-TS_set"><i class="fa fa-tag"></i> Total Solids set point [g m-3]</label>
|
||||
<input type="text" id="node-input-TS_set" placeholder="">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-inlet"><i class="fa fa-tag"></i> Assigned inlet return line</label>
|
||||
<input type="text" id="node-input-inlet" placeholder="#">
|
||||
</div>
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-help-name="settling-basin">
|
||||
<p>Settling tank</p>
|
||||
</script>
|
||||
57
additional_nodes/settling-basin.js
Normal file
57
additional_nodes/settling-basin.js
Normal file
@@ -0,0 +1,57 @@
|
||||
module.exports = function(RED) {
|
||||
function settler(config) {
|
||||
RED.nodes.createNode(this, config);
|
||||
var node = this;
|
||||
|
||||
let name = config.name;
|
||||
let TS_set = parseFloat(config.TS_set);
|
||||
const inlet_sludge = parseInt(config.inlet);
|
||||
|
||||
node.on('input', function(msg, send, done) {
|
||||
switch (msg.topic) {
|
||||
case "Fluent":
|
||||
// conserve volume flow debit
|
||||
let F_in = msg.payload.F;
|
||||
let C_in = msg.payload.C;
|
||||
let F2 = (F_in * C_in[12]) / TS_set;
|
||||
|
||||
let F1 = Math.max(F_in - F2, 0);
|
||||
let F2_corr = F_in < F2 ? F_in : F2;
|
||||
|
||||
let msg_F1 = structuredClone(msg);
|
||||
msg_F1.payload.F = F1;
|
||||
msg_F1.payload.C[7] = 0;
|
||||
msg_F1.payload.C[8] = 0;
|
||||
msg_F1.payload.C[9] = 0;
|
||||
msg_F1.payload.C[10] = 0;
|
||||
msg_F1.payload.C[11] = 0;
|
||||
msg_F1.payload.C[12] = 0;
|
||||
|
||||
let msg_F2 = {...msg};
|
||||
msg_F2.payload.F = F2_corr;
|
||||
if (F2_corr > 0) {
|
||||
msg_F2.payload.C[7] = F_in * C_in[7] / F2;
|
||||
msg_F2.payload.C[8] = F_in * C_in[8] / F2;
|
||||
msg_F2.payload.C[9] = F_in * C_in[9] / F2;
|
||||
msg_F2.payload.C[10] = F_in * C_in[10] / F2;
|
||||
msg_F2.payload.C[11] = F_in * C_in[11] / F2;
|
||||
msg_F2.payload.C[12] = F_in * C_in[12] / F2;
|
||||
}
|
||||
msg_F2.payload.inlet = inlet_sludge;
|
||||
|
||||
send([msg_F1, msg_F2]);
|
||||
break;
|
||||
case "clock":
|
||||
break;
|
||||
default:
|
||||
console.log("Unknown topic: " + msg.topic);
|
||||
}
|
||||
|
||||
if (done) {
|
||||
done();
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
RED.nodes.registerType("settling-basin", settler);
|
||||
};
|
||||
1763
flows/asm3_flows.json
Normal file
1763
flows/asm3_flows.json
Normal file
File diff suppressed because it is too large
Load Diff
119
package-lock.json
generated
Normal file
119
package-lock.json
generated
Normal file
@@ -0,0 +1,119 @@
|
||||
{
|
||||
"name": "asm3",
|
||||
"version": "0.0.1",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "asm3",
|
||||
"version": "0.0.1",
|
||||
"license": "SEE LICENSE",
|
||||
"dependencies": {
|
||||
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git#fix-missing-references",
|
||||
"mathjs": "^14.5.2"
|
||||
}
|
||||
},
|
||||
"node_modules/@babel/runtime": {
|
||||
"version": "7.28.3",
|
||||
"resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.28.3.tgz",
|
||||
"integrity": "sha512-9uIQ10o0WGdpP6GDhXcdOJPJuDgFtIDtN/9+ArJQ2NAfAmiuhTQdzkaTGR33v43GYS2UrSA0eX2pPPHoFVvpxA==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=6.9.0"
|
||||
}
|
||||
},
|
||||
"node_modules/complex.js": {
|
||||
"version": "2.4.2",
|
||||
"resolved": "https://registry.npmjs.org/complex.js/-/complex.js-2.4.2.tgz",
|
||||
"integrity": "sha512-qtx7HRhPGSCBtGiST4/WGHuW+zeaND/6Ld+db6PbrulIB1i2Ev/2UPiqcmpQNPSyfBKraC0EOvOKCB5dGZKt3g==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": "*"
|
||||
},
|
||||
"funding": {
|
||||
"type": "github",
|
||||
"url": "https://github.com/sponsors/rawify"
|
||||
}
|
||||
},
|
||||
"node_modules/decimal.js": {
|
||||
"version": "10.6.0",
|
||||
"resolved": "https://registry.npmjs.org/decimal.js/-/decimal.js-10.6.0.tgz",
|
||||
"integrity": "sha512-YpgQiITW3JXGntzdUmyUR1V812Hn8T1YVXhCu+wO3OpS4eU9l4YdD3qjyiKdV6mvV29zapkMeD390UVEf2lkUg==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/escape-latex": {
|
||||
"version": "1.2.0",
|
||||
"resolved": "https://registry.npmjs.org/escape-latex/-/escape-latex-1.2.0.tgz",
|
||||
"integrity": "sha512-nV5aVWW1K0wEiUIEdZ4erkGGH8mDxGyxSeqPzRNtWP7ataw+/olFObw7hujFWlVjNsaDFw5VZ5NzVSIqRgfTiw==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/fraction.js": {
|
||||
"version": "5.3.4",
|
||||
"resolved": "https://registry.npmjs.org/fraction.js/-/fraction.js-5.3.4.tgz",
|
||||
"integrity": "sha512-1X1NTtiJphryn/uLQz3whtY6jK3fTqoE3ohKs0tT+Ujr1W59oopxmoEh7Lu5p6vBaPbgoM0bzveAW4Qi5RyWDQ==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": "*"
|
||||
},
|
||||
"funding": {
|
||||
"type": "github",
|
||||
"url": "https://github.com/sponsors/rawify"
|
||||
}
|
||||
},
|
||||
"node_modules/generalFunctions": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git#302e12238745766a679ef11ca6ed5f4ea1548f87",
|
||||
"license": "SEE LICENSE"
|
||||
},
|
||||
"node_modules/javascript-natural-sort": {
|
||||
"version": "0.7.1",
|
||||
"resolved": "https://registry.npmjs.org/javascript-natural-sort/-/javascript-natural-sort-0.7.1.tgz",
|
||||
"integrity": "sha512-nO6jcEfZWQXDhOiBtG2KvKyEptz7RVbpGP4vTD2hLBdmNQSsCiicO2Ioinv6UI4y9ukqnBpy+XZ9H6uLNgJTlw==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/mathjs": {
|
||||
"version": "14.7.0",
|
||||
"resolved": "https://registry.npmjs.org/mathjs/-/mathjs-14.7.0.tgz",
|
||||
"integrity": "sha512-RaMhb+9MSESjDZNox/FzzuFpIUI+oxGLyOy1t3BMoW53pGWnTzZtlucJ5cvbit0dIMYlCq00gNbW1giZX4/1Rg==",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@babel/runtime": "^7.26.10",
|
||||
"complex.js": "^2.2.5",
|
||||
"decimal.js": "^10.4.3",
|
||||
"escape-latex": "^1.2.0",
|
||||
"fraction.js": "^5.2.1",
|
||||
"javascript-natural-sort": "^0.7.1",
|
||||
"seedrandom": "^3.0.5",
|
||||
"tiny-emitter": "^2.1.0",
|
||||
"typed-function": "^4.2.1"
|
||||
},
|
||||
"bin": {
|
||||
"mathjs": "bin/cli.js"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
}
|
||||
},
|
||||
"node_modules/seedrandom": {
|
||||
"version": "3.0.5",
|
||||
"resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-3.0.5.tgz",
|
||||
"integrity": "sha512-8OwmbklUNzwezjGInmZ+2clQmExQPvomqjL7LFqOYqtmuxRgQYqOD3mHaU+MvZn5FLUeVxVfQjwLZW/n/JFuqg==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/tiny-emitter": {
|
||||
"version": "2.1.0",
|
||||
"resolved": "https://registry.npmjs.org/tiny-emitter/-/tiny-emitter-2.1.0.tgz",
|
||||
"integrity": "sha512-NB6Dk1A9xgQPMoGqC5CVXn123gWyte215ONT5Pp5a0yt4nlEoO1ZWeCwpncaekPHXO60i47ihFnZPiRPjRMq4Q==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/typed-function": {
|
||||
"version": "4.2.1",
|
||||
"resolved": "https://registry.npmjs.org/typed-function/-/typed-function-4.2.1.tgz",
|
||||
"integrity": "sha512-EGjWssW7Tsk4DGfE+5yluuljS1OGYWiI1J6e8puZz9nTMM51Oug8CD5Zo4gWMsOhq5BI+1bF+rWTm4Vbj3ivRA==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
33
package.json
Normal file
33
package.json
Normal file
@@ -0,0 +1,33 @@
|
||||
{
|
||||
"name": "asm3",
|
||||
"version": "0.0.1",
|
||||
"description": "Implementation of the asm3 model for Node-Red",
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "https://gitea.centraal.wbd-rd.nl/RnD/reactor.git"
|
||||
},
|
||||
"keywords": [
|
||||
"asm3",
|
||||
"activated sludge",
|
||||
"wastewater",
|
||||
"biological model",
|
||||
"node-red"
|
||||
],
|
||||
"license": "SEE LICENSE",
|
||||
"author": "P.R. van der Wilt",
|
||||
"main": "reactor.js",
|
||||
"scripts": {
|
||||
"test": "node reactor.js"
|
||||
},
|
||||
"node-red": {
|
||||
"nodes": {
|
||||
"reactor": "reactor.js",
|
||||
"recirculation-pump": "additional_nodes/recirculation-pump.js",
|
||||
"settling-basin": "additional_nodes/settling-basin.js"
|
||||
}
|
||||
},
|
||||
"dependencies": {
|
||||
"generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git#fix-missing-references",
|
||||
"mathjs": "^14.5.2"
|
||||
}
|
||||
}
|
||||
248
reactor.html
Normal file
248
reactor.html
Normal file
@@ -0,0 +1,248 @@
|
||||
<script src="/advancedReactor/menu.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
RED.nodes.registerType("advancedReactor", {
|
||||
category: "WWTP",
|
||||
color: "#c4cce0",
|
||||
defaults: {
|
||||
name: { value: "" },
|
||||
reactor_type: { value: "CSTR", required: true },
|
||||
volume: { value: 0., required: true },
|
||||
length: { value: 0.},
|
||||
resolution_L: { value: 0.},
|
||||
alpha: {value: 0},
|
||||
n_inlets: { value: 1, required: true},
|
||||
kla: { value: null },
|
||||
|
||||
S_O_init: { value: 0., required: true },
|
||||
S_I_init: { value: 30., required: true },
|
||||
S_S_init: { value: 100., required: true },
|
||||
S_NH_init: { value: 16., required: true },
|
||||
S_N2_init: { value: 0., required: true },
|
||||
S_NO_init: { value: 0., required: true },
|
||||
S_HCO_init: { value: 5., required: true },
|
||||
X_I_init: { value: 25., required: true },
|
||||
X_S_init: { value: 75., required: true },
|
||||
X_H_init: { value: 30., required: true },
|
||||
X_STO_init: { value: 0., required: true },
|
||||
X_A_init: { value: 0.001, required: true },
|
||||
X_TS_init: { value: 125.0009, required: true },
|
||||
|
||||
timeStep: { value: 1, required: true },
|
||||
|
||||
enableLog: { value: false },
|
||||
logLevel: { value: "error" },
|
||||
|
||||
positionVsParent: { value: "" },
|
||||
},
|
||||
inputs: 1,
|
||||
outputs: 3,
|
||||
inputLabels: ["input"],
|
||||
outputLabels: ["process", "dbase", "parent"],
|
||||
icon: "font-awesome/fa-recycle",
|
||||
label: function() {
|
||||
return this.name || "advancedReactor";
|
||||
},
|
||||
oneditprepare: function() {
|
||||
// wait for the menu scripts to load
|
||||
const waitForMenuData = () => {
|
||||
if (window.EVOLV?.nodes?.advancedReactor?.initEditor) {
|
||||
window.EVOLV.nodes.advancedReactor.initEditor(this);
|
||||
} else {
|
||||
setTimeout(waitForMenuData, 50);
|
||||
}
|
||||
};
|
||||
waitForMenuData();
|
||||
|
||||
$("#node-input-volume").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-n_inlets").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-length").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-resolution_L").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-kla").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$(".concentrations").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
});
|
||||
$("#node-input-reactor_type").typedInput({
|
||||
types: [
|
||||
{
|
||||
value: "CSTR",
|
||||
options: [
|
||||
{ value: "CSTR", label: "CSTR"},
|
||||
{ value: "PFR", label: "PFR"}
|
||||
]
|
||||
}
|
||||
]
|
||||
})
|
||||
$("#node-input-reactor_type").on("change", function() {
|
||||
const type = $("#node-input-reactor_type").typedInput("value");
|
||||
if (type === "CSTR") {
|
||||
$(".PFR").hide();
|
||||
} else {
|
||||
$(".PFR").show();
|
||||
}
|
||||
});
|
||||
$("#node-input-alpha").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
})
|
||||
$("#node-input-timeStep").typedInput({
|
||||
type:"num",
|
||||
types:["num"]
|
||||
})
|
||||
// Set initial visibility on dialog open
|
||||
const initialType = $("#node-input-reactor_type").typedInput("value");
|
||||
if (initialType === "CSTR") {
|
||||
$(".PFR").hide();
|
||||
} else {
|
||||
$(".PFR").show();
|
||||
}
|
||||
},
|
||||
oneditsave: function() {
|
||||
// save logger fields
|
||||
if (window.EVOLV?.nodes?.['advancedReactor']?.loggerMenu?.saveEditor) {
|
||||
window.EVOLV.nodes['advancedReactor'].loggerMenu.saveEditor(this);
|
||||
}
|
||||
|
||||
// save position field
|
||||
if (window.EVOLV?.nodes?.measurement?.positionMenu?.saveEditor) {
|
||||
window.EVOLV.nodes.rotatingMachine.positionMenu.saveEditor(this);
|
||||
}
|
||||
|
||||
let volume = parseFloat($("#node-input-volume").typedInput("value"));
|
||||
if (isNaN(volume) || volume <= 0) {
|
||||
RED.notify("Fluid volume not set correctly", {type: "error"});
|
||||
}
|
||||
let n_inlets = parseInt($("#node-input-n_inlets").typedInput("value"));
|
||||
if (isNaN(n_inlets) || n_inlets < 1) {
|
||||
RED.notify("Number of inlets not set correctly", {type: "error"});
|
||||
}
|
||||
}
|
||||
});
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-template-name="advancedReactor">
|
||||
<div class="form-row">
|
||||
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
|
||||
<input type="text" id="node-input-name" placeholder="Name">
|
||||
</div>
|
||||
<h2> Reactor properties </h2>
|
||||
<div class="form-row">
|
||||
<label for="node-input-reactor_type"><i class="fa fa-tag"></i> Reactor type</label>
|
||||
<input type="text" id="node-input-reactor_type">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-volume"><i class="fa fa-tag"></i> Fluid volume [m3]</label>
|
||||
<input type="text" id="node-input-volume" placeholder="m3">
|
||||
</div>
|
||||
<div class="form-row PFR">
|
||||
<label for="node-input-length"><i class="fa fa-tag"></i> Reactor length [m]</label>
|
||||
<input type="text" id="node-input-length" placeholder="m">
|
||||
</div>
|
||||
<div class="form-row PFR">
|
||||
<label for="node-input-resolution_L"><i class="fa fa-tag"></i> Resolution</label>
|
||||
<input type="text" id="node-input-resolution_L" placeholder="#">
|
||||
</div>
|
||||
<div class="PFR">
|
||||
<p> Inlet boundary condition parameter α (α = 0: Danckwerts BC / α = 1: Dirichlet BC) </p>
|
||||
<div class="form-row">
|
||||
<label for="node-input-alpha"><i class="fa fa-tag"></i>Adjustable parameter BC</label>
|
||||
<input type="text" id="node-input-alpha">
|
||||
</div>
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-n_inlets"><i class="fa fa-tag"></i> Number of inlets</label>
|
||||
<input type="text" id="node-input-n_inlets" placeholder="#">
|
||||
</div>
|
||||
<h3> Internal mass transfer calculation (optional) </h3>
|
||||
<div class="form-row">
|
||||
<label for="node-input-kla"><i class="fa fa-tag"></i> kLa [d-1]</label>
|
||||
<input type="text" id="node-input-kla" placeholder="d-1">
|
||||
</div>
|
||||
<h2> Dissolved components </h2>
|
||||
<div class="form-row">
|
||||
<label for="node-input-S_O_init"><i class="fa fa-tag"></i> Initial dissolved oxygen [g O2 m-3]</label>
|
||||
<input type="text" id="node-input-S_O_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-S_I_init"><i class="fa fa-tag"></i> Initial soluble inert organics [g COD m-3]</label>
|
||||
<input type="text" id="node-input-S_I_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-S_S_init"><i class="fa fa-tag"></i> Initial readily biodegrable substrates [g COD m-3]</label>
|
||||
<input type="text" id="node-input-S_S_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-S_NH_init"><i class="fa fa-tag"></i> Initial ammonium / ammonia [g N m-3]</label>
|
||||
<input type="text" id="node-input-S_NH_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-S_N2_init"><i class="fa fa-tag"></i> Initial dinitrogen, released by denitrification [g N m-3]</label>
|
||||
<input type="text" id="node-input-S_N2_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-S_NO_init"><i class="fa fa-tag"></i> Initial nitrite + nitrate [g N m-3]</label>
|
||||
<input type="text" id="node-input-S_NO_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-S_HCO_init"><i class="fa fa-tag"></i> Initial alkalinity, bicarbonate [mole HCO3- m-3]</label>
|
||||
<input type="text" id="node-input-S_HCO_init" class="concentrations">
|
||||
</div>
|
||||
<h2> Particulate components </h2>
|
||||
<div class="form-row">
|
||||
<label for="node-input-X_I_init"><i class="fa fa-tag"></i> Initial inert particulate organics [g COD m-3]</label>
|
||||
<input type="text" id="node-input-X_I_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-X_S_init"><i class="fa fa-tag"></i> Initial slowly biodegrable substrates [g COD m-3]</label>
|
||||
<input type="text" id="node-input-X_S_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-X_H_init"><i class="fa fa-tag"></i> Initial heterotrophic biomass [g COD m-3]</label>
|
||||
<input type="text" id="node-input-X_H_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-X_STO_init"><i class="fa fa-tag"></i> Initial Organics stored by heterotrophs [g COD m-3]</label>
|
||||
<input type="text" id="node-input-X_STO_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-X_A_init"><i class="fa fa-tag"></i> Initial autotrophic, nitrifying biomass [g COD m-3]</label>
|
||||
<input type="text" id="node-input-X_A_init" class="concentrations">
|
||||
</div>
|
||||
<div class="form-row">
|
||||
<label for="node-input-X_TS_init"><i class="fa fa-tag"></i> Initial total suspended solids [g TSS m-3]</label>
|
||||
<input type="text" id="node-input-X_TS_init" class="concentrations">
|
||||
</div>
|
||||
<h2> Simulation parameters </h2>
|
||||
<div class="form-row">
|
||||
<label for="node-input-timeStep"><i class="fa fa-tag"></i> Time step [s]</label>
|
||||
<input type="text" id="node-input-timeStep" placeholder="s">
|
||||
</div>
|
||||
|
||||
<!-- Logger fields injected here -->
|
||||
<div id="logger-fields-placeholder"></div>
|
||||
|
||||
<!-- Position fields will be injected here -->
|
||||
<div id="position-fields-placeholder"></div>
|
||||
|
||||
|
||||
</script>
|
||||
|
||||
<script type="text/html" data-help-name="advancedReactor">
|
||||
<p>New reactor node</p>
|
||||
</script>
|
||||
26
reactor.js
Normal file
26
reactor.js
Normal file
@@ -0,0 +1,26 @@
|
||||
const nameOfNode = "advancedReactor"; // name of the node, should match file name and node type in Node-RED
|
||||
const nodeClass = require('./src/nodeClass.js'); // node class
|
||||
const { MenuManager } = require('generalFunctions');
|
||||
|
||||
|
||||
module.exports = function (RED) {
|
||||
// Register the node type
|
||||
RED.nodes.registerType(nameOfNode, function (config) {
|
||||
// Initialize the Node-RED node first
|
||||
RED.nodes.createNode(this, config);
|
||||
// Then create your custom class and attach it
|
||||
this.nodeClass = new nodeClass(config, RED, this, nameOfNode);
|
||||
});
|
||||
|
||||
const menuMgr = new MenuManager();
|
||||
|
||||
// Serve /advancedReactor/menu.js
|
||||
RED.httpAdmin.get(`/${nameOfNode}/menu.js`, (req, res) => {
|
||||
try {
|
||||
const script = menuMgr.createEndpoint(nameOfNode, ['logger', 'position']);
|
||||
res.type('application/javascript').send(script);
|
||||
} catch (err) {
|
||||
res.status(500).send(`// Error generating menu: ${err.message}`);
|
||||
}
|
||||
});
|
||||
};
|
||||
165
src/nodeClass.js
Normal file
165
src/nodeClass.js
Normal file
@@ -0,0 +1,165 @@
|
||||
const { Reactor_CSTR, Reactor_PFR } = require('./specificClass.js');
|
||||
|
||||
|
||||
class nodeClass {
|
||||
/**
|
||||
* Node-RED node class for advanced-reactor.
|
||||
* @param {object} uiConfig - Node-RED node configuration
|
||||
* @param {object} RED - Node-RED runtime API
|
||||
* @param {object} nodeInstance - Node-RED node instance
|
||||
* @param {string} nameOfNode - Name of the node
|
||||
*/
|
||||
constructor(uiConfig, RED, nodeInstance, nameOfNode) {
|
||||
// Preserve RED reference for HTTP endpoints if needed
|
||||
this.node = nodeInstance;
|
||||
this.RED = RED;
|
||||
this.name = nameOfNode;
|
||||
this.source = null;
|
||||
|
||||
this._loadConfig(uiConfig)
|
||||
this._setupClass();
|
||||
|
||||
this._attachInputHandler();
|
||||
this._registerChild();
|
||||
this._startTickLoop();
|
||||
this._attachCloseHandler();
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle node-red input messages
|
||||
*/
|
||||
_attachInputHandler() {
|
||||
this.node.on('input', (msg, send, done) => {
|
||||
|
||||
switch (msg.topic) {
|
||||
case "clock":
|
||||
this.source.updateState(msg.timestamp);
|
||||
send([msg, null, null]);
|
||||
break;
|
||||
case "Fluent":
|
||||
this.source.setInfluent = msg;
|
||||
break;
|
||||
case "OTR":
|
||||
this.source.setOTR = msg;
|
||||
break;
|
||||
case "Temperature":
|
||||
this.source.setTemperature = msg;
|
||||
break;
|
||||
case "Dispersion":
|
||||
this.source.setDispersion = msg;
|
||||
break;
|
||||
case 'registerChild':
|
||||
// Register this node as a parent of the child node
|
||||
const childId = msg.payload;
|
||||
const childObj = this.RED.nodes.getNode(childId);
|
||||
this.source.childRegistrationUtils.registerChild(childObj.source, msg.positionVsParent);
|
||||
break;
|
||||
default:
|
||||
console.log("Unknown topic: " + msg.topic);
|
||||
}
|
||||
|
||||
if (done) {
|
||||
done();
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse node configuration
|
||||
* @param {object} uiConfig Config set in UI in node-red
|
||||
*/
|
||||
_loadConfig(uiConfig) {
|
||||
this.config = {
|
||||
general: {
|
||||
name: uiConfig.name || this.name,
|
||||
id: this.node.id,
|
||||
unit: null,
|
||||
logging: {
|
||||
enabled: uiConfig.enableLog,
|
||||
logLevel: uiConfig.logLevel
|
||||
}
|
||||
},
|
||||
functionality: {
|
||||
positionVsParent: uiConfig.positionVsParent || 'atEquipment', // Default to 'atEquipment' if not specified
|
||||
softwareType: "reactor" // should be set in config manager
|
||||
},
|
||||
reactor_type: uiConfig.reactor_type,
|
||||
volume: parseFloat(uiConfig.volume),
|
||||
length: parseFloat(uiConfig.length),
|
||||
resolution_L: parseInt(uiConfig.resolution_L),
|
||||
alpha: parseFloat(uiConfig.alpha),
|
||||
n_inlets: parseInt(uiConfig.n_inlets),
|
||||
kla: parseFloat(uiConfig.kla),
|
||||
initialState: [
|
||||
parseFloat(uiConfig.S_O_init),
|
||||
parseFloat(uiConfig.S_I_init),
|
||||
parseFloat(uiConfig.S_S_init),
|
||||
parseFloat(uiConfig.S_NH_init),
|
||||
parseFloat(uiConfig.S_N2_init),
|
||||
parseFloat(uiConfig.S_NO_init),
|
||||
parseFloat(uiConfig.S_HCO_init),
|
||||
parseFloat(uiConfig.X_I_init),
|
||||
parseFloat(uiConfig.X_S_init),
|
||||
parseFloat(uiConfig.X_H_init),
|
||||
parseFloat(uiConfig.X_STO_init),
|
||||
parseFloat(uiConfig.X_A_init),
|
||||
parseFloat(uiConfig.X_TS_init)
|
||||
],
|
||||
timeStep: parseFloat(uiConfig.timeStep)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Register this node as a child upstream and downstream.
|
||||
* Delayed to avoid Node-RED startup race conditions.
|
||||
*/
|
||||
_registerChild() {
|
||||
setTimeout(() => {
|
||||
this.node.send([
|
||||
null,
|
||||
null,
|
||||
{ topic: 'registerChild', payload: this.node.id, positionVsParent: this.config?.functionality?.positionVsParent || 'atEquipment' }
|
||||
]);
|
||||
}, 100);
|
||||
}
|
||||
|
||||
/**
|
||||
* Setup reactor class based on config
|
||||
*/
|
||||
_setupClass() {
|
||||
let new_reactor;
|
||||
|
||||
switch (this.config.reactor_type) {
|
||||
case "CSTR":
|
||||
new_reactor = new Reactor_CSTR(this.config);
|
||||
break;
|
||||
case "PFR":
|
||||
new_reactor = new Reactor_PFR(this.config);
|
||||
break;
|
||||
default:
|
||||
console.warn("Unknown reactor type: " + uiConfig.reactor_type);
|
||||
}
|
||||
|
||||
this.source = new_reactor; // protect from reassignment
|
||||
this.node.source = this.source;
|
||||
}
|
||||
|
||||
_startTickLoop() {
|
||||
setTimeout(() => {
|
||||
this._tickInterval = setInterval(() => this._tick(), 1000);
|
||||
}, 1000);
|
||||
}
|
||||
|
||||
_tick(){
|
||||
this.node.send([this.source.getEffluent, null, null]);
|
||||
}
|
||||
|
||||
_attachCloseHandler() {
|
||||
this.node.on('close', (done) => {
|
||||
clearInterval(this._tickInterval);
|
||||
done();
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = nodeClass;
|
||||
211
src/reaction_modules/asm3_class Koch.js
Normal file
211
src/reaction_modules/asm3_class Koch.js
Normal file
@@ -0,0 +1,211 @@
|
||||
const math = require('mathjs')
|
||||
|
||||
/**
|
||||
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
|
||||
*/
|
||||
class ASM3 {
|
||||
|
||||
constructor() {
|
||||
/**
|
||||
* Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
|
||||
* @property {Object} kin_params - Kinetic parameters
|
||||
*/
|
||||
this.kin_params = {
|
||||
// Hydrolysis
|
||||
k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
|
||||
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
|
||||
// Heterotrophs
|
||||
k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
|
||||
nu_NO: 0.5, // anoxic reduction factor [-]
|
||||
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
|
||||
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
|
||||
K_S: 10., // saturation constant S_s [g COD m-3]
|
||||
K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
|
||||
mu_H_max: 3., // maximum specific growth rate [d-1]
|
||||
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_H_O: 0.3, // aerobic respiration rate [d-1]
|
||||
b_H_NO: 0.15, // anoxic respiration rate [d-1]
|
||||
b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
|
||||
b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
|
||||
// Autotrophs
|
||||
mu_A_max: 1.3, // maximum specific growth rate [d-1]
|
||||
K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
|
||||
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_A_O: 0.20, // aerobic respiration rate [d-1]
|
||||
b_A_NO: 0.10 // anoxic respiration rate [d-1]
|
||||
};
|
||||
|
||||
/**
|
||||
* Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
|
||||
* @property {Object} stoi_params - Stoichiometric parameters
|
||||
*/
|
||||
this.stoi_params = {
|
||||
// Fractions
|
||||
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
|
||||
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
|
||||
// Yields
|
||||
Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
|
||||
// Composition (COD via DoR)
|
||||
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
|
||||
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
|
||||
// Composition (nitrogen)
|
||||
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
|
||||
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
|
||||
i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
|
||||
i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
|
||||
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
|
||||
// Composition (TSS)
|
||||
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
|
||||
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
|
||||
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
|
||||
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
|
||||
// Composition (charge)
|
||||
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
|
||||
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
|
||||
};
|
||||
|
||||
/**
|
||||
* Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters.
|
||||
* These parameters are used to adjust reaction rates based on temperature.
|
||||
* @property {Object} temp_params - Temperature theta parameters
|
||||
*/
|
||||
this.temp_params = {
|
||||
// Hydrolysis
|
||||
theta_H: 0.04,
|
||||
// Heterotrophs
|
||||
theta_STO: 0.07,
|
||||
theta_mu_H: 0.07,
|
||||
theta_b_H_O: 0.07,
|
||||
theta_b_H_NO: 0.07,
|
||||
theta_b_STO_O: this._compute_theta(0.1, 0.3, 10, 20),
|
||||
theta_b_STO_NO: this._compute_theta(0.05, 0.15, 10, 20),
|
||||
// Autotrophs
|
||||
theta_mu_A: 0.105,
|
||||
theta_b_A_O: 0.105,
|
||||
theta_b_A_NO: 0.105
|
||||
};
|
||||
|
||||
this.stoi_matrix = this._initialise_stoi_matrix();
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialises the stoichiometric matrix for ASM3.
|
||||
* @returns {Array} - The stoichiometric matrix for ASM3. (2D array)
|
||||
*/
|
||||
_initialise_stoi_matrix() { // initialise stoichiometric matrix
|
||||
const { f_SI, f_XI, Y_STO_O, Y_STO_NO, Y_H_O, Y_H_NO, Y_A, i_CODN, i_CODNO, i_NSI, i_NSS, i_NXI, i_NXS, i_NBM, i_TSXI, i_TSXS, i_TSBM, i_TSSTO, i_cNH, i_cNO } = this.stoi_params;
|
||||
|
||||
const stoi_matrix = Array(12);
|
||||
// S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
stoi_matrix[0] = [0., f_SI, 1.-f_SI, i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI, 0., 0., (i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI)*i_cNH, 0., -1., 0., 0., 0., -i_TSXS];
|
||||
stoi_matrix[1] = [-(1.-Y_STO_O), 0, -1., i_NSS, 0., 0., i_NSS*i_cNH, 0., 0., 0., Y_STO_O, 0., Y_STO_O*i_TSSTO];
|
||||
stoi_matrix[2] = [0., 0., -1., i_NSS, -(1.-Y_STO_NO)/(i_CODNO-i_CODN), (1.-Y_STO_NO)/(i_CODNO-i_CODN), i_NSS*i_cNH + (1.-Y_STO_NO)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., Y_STO_NO, 0., Y_STO_NO*i_TSSTO];
|
||||
stoi_matrix[3] = [-(1.-Y_H_O)/Y_H_O, 0., 0., -i_NBM, 0., 0., -i_NBM*i_cNH, 0., 0., 1., -1./Y_H_O, 0., i_TSBM-i_TSSTO/Y_H_O];
|
||||
stoi_matrix[4] = [0., 0., 0., -i_NBM, -(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), (1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), -i_NBM*i_cNH+(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN))*i_cNO, 0., 0., 1., -1./Y_H_NO, 0., i_TSBM-i_TSSTO/Y_H_NO];
|
||||
stoi_matrix[5] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
|
||||
stoi_matrix[6] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
|
||||
stoi_matrix[7] = [-1., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., -i_TSSTO];
|
||||
stoi_matrix[8] = [0., 0., 0., 0., -1./(i_CODNO-i_CODN), 1./(i_CODNO-i_CODN), i_cNO/(i_CODNO-i_CODN), 0., 0., 0., -1., 0., -i_TSSTO];
|
||||
stoi_matrix[9] = [1.+i_CODNO/Y_A, 0., 0., -1./Y_A-i_NBM, 0., 1./Y_A, (-1./Y_A-i_NBM)*i_cNH+i_cNO/Y_A, 0., 0., 0., 0., 1., i_TSBM];
|
||||
stoi_matrix[10] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
|
||||
stoi_matrix[11] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
|
||||
|
||||
return stoi_matrix[0].map((col, i) => stoi_matrix.map(row => row[i])); // transpose matrix
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the Monod equation rate value for a given concentration and half-saturation constant.
|
||||
* @param {number} c - Concentration of reaction species.
|
||||
* @param {number} K - Half-saturation constant for the reaction species.
|
||||
* @returns {number} - Monod equation rate value for the given concentration and half-saturation constant.
|
||||
*/
|
||||
_monod(c, K) {
|
||||
return c / (K + c);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the inverse Monod equation rate value for a given concentration and half-saturation constant. Used for inhibition.
|
||||
* @param {number} c - Concentration of reaction species.
|
||||
* @param {number} K - Half-saturation constant for the reaction species.
|
||||
* @returns {number} - Inverse Monod equation rate value for the given concentration and half-saturation constant.
|
||||
*/
|
||||
_inv_monod(c, K) {
|
||||
return K / (K + c);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adjust the rate parameter for temperature T using simplied Arrhenius equation based on rate constant at 20 degrees Celsius and theta parameter.
|
||||
* @param {number} k - Rate constant at 20 degrees Celcius.
|
||||
* @param {number} theta - Theta parameter.
|
||||
* @param {number} T - Temperature in Celcius.
|
||||
* @returns {number} - Adjusted rate parameter at temperature T based on the Arrhenius equation.
|
||||
*/
|
||||
_arrhenius(k, theta, T) {
|
||||
return k * Math.exp(theta*(T-20));
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the temperature theta parameter based on two rate constants and their corresponding temperatures.
|
||||
* @param {number} k1 - Rate constant at temperature T1.
|
||||
* @param {number} k2 - Rate constant at temperature T2.
|
||||
* @param {number} T1 - Temperature T1 in Celcius.
|
||||
* @param {number} T2 - Temperature T2 in Celcius.
|
||||
* @returns {number} - Theta parameter.
|
||||
*/
|
||||
_compute_theta(k1, k2, T1, T2) {
|
||||
return Math.log(k1/k2)/(T1-T2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the reaction rates for each process reaction based on the current state and temperature.
|
||||
* @param {Array} state - State vector containing concentrations of reaction species.
|
||||
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
|
||||
* @returns {Array} - Reaction rates for each process reaction.
|
||||
*/
|
||||
compute_rates(state, T = 20) {
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
const rates = Array(12);
|
||||
const [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = state;
|
||||
const { k_H, K_X, k_STO, nu_NO, K_O, K_NO, K_S, K_STO, mu_H_max, K_NH, K_HCO, b_H_O, b_H_NO, b_STO_O, b_STO_NO, mu_A_max, K_A_NH, K_A_O, K_A_HCO, b_A_O, b_A_NO } = this.kin_params;
|
||||
const { theta_H, theta_STO, theta_mu_H, theta_b_H_O, theta_b_H_NO, theta_b_STO_O, theta_b_STO_NO, theta_mu_A, theta_b_A_O, theta_b_A_NO } = this.temp_params;
|
||||
|
||||
// Hydrolysis
|
||||
rates[0] = X_H == 0 ? 0 : this._arrhenius(k_H, theta_H, T) * this._monod(X_S / X_H, K_X) * X_H;
|
||||
|
||||
// Heterotrophs
|
||||
rates[1] = this._arrhenius(k_STO, theta_STO, T) * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
|
||||
rates[2] = this._arrhenius(k_STO, theta_STO, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
|
||||
rates[3] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[4] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[5] = this._arrhenius(b_H_O, theta_b_H_O, T) * this._monod(S_O, K_O) * X_H;
|
||||
rates[6] = this._arrhenius(b_H_NO, theta_b_H_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
|
||||
rates[7] = this._arrhenius(b_STO_O, theta_b_STO_O, T) * this._monod(S_O, K_O) * X_H;
|
||||
rates[8] = this._arrhenius(b_STO_NO, theta_b_STO_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
|
||||
|
||||
// Autotrophs
|
||||
rates[9] = this._arrhenius(mu_A_max, theta_mu_A, T) * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
|
||||
rates[10] = this._arrhenius(b_A_O, theta_b_A_O, T) * this._monod(S_O, K_O) * X_A;
|
||||
rates[11] = this._arrhenius(b_A_NO, theta_b_A_NO, T) * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
|
||||
|
||||
return rates;
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the change in concentrations of reaction species based on the current state and temperature.
|
||||
* @param {Array} state - State vector containing concentrations of reaction species.
|
||||
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
|
||||
* @returns {Array} - Change in reaction species concentrations.
|
||||
*/
|
||||
compute_dC(state, T = 20) { // compute changes in concentrations
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
return math.multiply(this.stoi_matrix, this.compute_rates(state, T));
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = ASM3;
|
||||
211
src/reaction_modules/asm3_class.js
Normal file
211
src/reaction_modules/asm3_class.js
Normal file
@@ -0,0 +1,211 @@
|
||||
const math = require('mathjs')
|
||||
|
||||
/**
|
||||
* ASM3 class for the Activated Sludge Model No. 3 (ASM3).
|
||||
*/
|
||||
class ASM3 {
|
||||
|
||||
constructor() {
|
||||
/**
|
||||
* Kinetic parameters for ASM3 at 20 C.
|
||||
* @property {Object} kin_params - Kinetic parameters
|
||||
*/
|
||||
this.kin_params = {
|
||||
// Hydrolysis
|
||||
k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
|
||||
K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
|
||||
// Heterotrophs
|
||||
k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
|
||||
nu_NO: 0.6, // anoxic reduction factor [-]
|
||||
K_O: 0.2, // saturation constant S_0 [g O2 m-3]
|
||||
K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
|
||||
K_S: 2., // saturation constant S_s [g COD m-3]
|
||||
K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
|
||||
mu_H_max: 2., // maximum specific growth rate [d-1]
|
||||
K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_H_O: 0.2, // aerobic respiration rate [d-1]
|
||||
b_H_NO: 0.1, // anoxic respiration rate [d-1]
|
||||
b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
|
||||
b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
|
||||
// Autotrophs
|
||||
mu_A_max: 1.0, // maximum specific growth rate [d-1]
|
||||
K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
|
||||
K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
|
||||
K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
|
||||
b_A_O: 0.15, // aerobic respiration rate [d-1]
|
||||
b_A_NO: 0.05 // anoxic respiration rate [d-1]
|
||||
};
|
||||
|
||||
/**
|
||||
* Stoichiometric and composition parameters for ASM3.
|
||||
* @property {Object} stoi_params - Stoichiometric parameters
|
||||
*/
|
||||
this.stoi_params = {
|
||||
// Fractions
|
||||
f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
|
||||
f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
|
||||
// Yields
|
||||
Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
|
||||
Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
|
||||
Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
|
||||
// Composition (COD via DoR)
|
||||
i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
|
||||
i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
|
||||
// Composition (nitrogen)
|
||||
i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
|
||||
i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
|
||||
i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
|
||||
i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
|
||||
i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
|
||||
// Composition (TSS)
|
||||
i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
|
||||
i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
|
||||
i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
|
||||
i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
|
||||
// Composition (charge)
|
||||
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
|
||||
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
|
||||
};
|
||||
|
||||
/**
|
||||
* Temperature theta parameters for ASM3.
|
||||
* These parameters are used to adjust reaction rates based on temperature.
|
||||
* @property {Object} temp_params - Temperature theta parameters
|
||||
*/
|
||||
this.temp_params = {
|
||||
// Hydrolysis
|
||||
theta_H: this._compute_theta(2, 3, 10, 20),
|
||||
// Heterotrophs
|
||||
theta_STO: this._compute_theta(2.5, 5, 10, 20),
|
||||
theta_mu_H: this._compute_theta(1, 2, 10, 20),
|
||||
theta_b_H_O: this._compute_theta(0.1, 0.2, 10, 20),
|
||||
theta_b_H_NO: this._compute_theta(0.05, 0.1, 10, 20),
|
||||
theta_b_STO_O: this._compute_theta(0.1, 0.2, 10, 20),
|
||||
theta_b_STO_NO: this._compute_theta(0.05, 0.1, 10, 20),
|
||||
// Autotrophs
|
||||
theta_mu_A: this._compute_theta(0.35, 1, 10, 20),
|
||||
theta_b_A_O: this._compute_theta(0.05, 0.15, 10, 20),
|
||||
theta_b_A_NO: this._compute_theta(0.02, 0.05, 10, 20)
|
||||
};
|
||||
|
||||
this.stoi_matrix = this._initialise_stoi_matrix();
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialises the stoichiometric matrix for ASM3.
|
||||
* @returns {Array} - The stoichiometric matrix for ASM3. (2D array)
|
||||
*/
|
||||
_initialise_stoi_matrix() { // initialise stoichiometric matrix
|
||||
const { f_SI, f_XI, Y_STO_O, Y_STO_NO, Y_H_O, Y_H_NO, Y_A, i_CODN, i_CODNO, i_NSI, i_NSS, i_NXI, i_NXS, i_NBM, i_TSXI, i_TSXS, i_TSBM, i_TSSTO, i_cNH, i_cNO } = this.stoi_params;
|
||||
|
||||
const stoi_matrix = Array(12);
|
||||
// S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
stoi_matrix[0] = [0., f_SI, 1.-f_SI, i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI, 0., 0., (i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI)*i_cNH, 0., -1., 0., 0., 0., -i_TSXS];
|
||||
stoi_matrix[1] = [-(1.-Y_STO_O), 0, -1., i_NSS, 0., 0., i_NSS*i_cNH, 0., 0., 0., Y_STO_O, 0., Y_STO_O*i_TSSTO];
|
||||
stoi_matrix[2] = [0., 0., -1., i_NSS, -(1.-Y_STO_NO)/(i_CODNO-i_CODN), (1.-Y_STO_NO)/(i_CODNO-i_CODN), i_NSS*i_cNH + (1.-Y_STO_NO)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., Y_STO_NO, 0., Y_STO_NO*i_TSSTO];
|
||||
stoi_matrix[3] = [-(1.-Y_H_O)/Y_H_O, 0., 0., -i_NBM, 0., 0., -i_NBM*i_cNH, 0., 0., 1., -1./Y_H_O, 0., i_TSBM-i_TSSTO/Y_H_O];
|
||||
stoi_matrix[4] = [0., 0., 0., -i_NBM, -(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), (1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), -i_NBM*i_cNH+(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN))*i_cNO, 0., 0., 1., -1./Y_H_NO, 0., i_TSBM-i_TSSTO/Y_H_NO];
|
||||
stoi_matrix[5] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
|
||||
stoi_matrix[6] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
|
||||
stoi_matrix[7] = [-1., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., -i_TSSTO];
|
||||
stoi_matrix[8] = [0., 0., 0., 0., -1./(i_CODNO-i_CODN), 1./(i_CODNO-i_CODN), i_cNO/(i_CODNO-i_CODN), 0., 0., 0., -1., 0., -i_TSSTO];
|
||||
stoi_matrix[9] = [1.+i_CODNO/Y_A, 0., 0., -1./Y_A-i_NBM, 0., 1./Y_A, (-1./Y_A-i_NBM)*i_cNH+i_cNO/Y_A, 0., 0., 0., 0., 1., i_TSBM];
|
||||
stoi_matrix[10] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
|
||||
stoi_matrix[11] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
|
||||
|
||||
return stoi_matrix[0].map((col, i) => stoi_matrix.map(row => row[i])); // transpose matrix
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the Monod equation rate value for a given concentration and half-saturation constant.
|
||||
* @param {number} c - Concentration of reaction species.
|
||||
* @param {number} K - Half-saturation constant for the reaction species.
|
||||
* @returns {number} - Monod equation rate value for the given concentration and half-saturation constant.
|
||||
*/
|
||||
_monod(c, K) {
|
||||
return c / (K + c);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the inverse Monod equation rate value for a given concentration and half-saturation constant. Used for inhibition.
|
||||
* @param {number} c - Concentration of reaction species.
|
||||
* @param {number} K - Half-saturation constant for the reaction species.
|
||||
* @returns {number} - Inverse Monod equation rate value for the given concentration and half-saturation constant.
|
||||
*/
|
||||
_inv_monod(c, K) {
|
||||
return K / (K + c);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adjust the rate parameter for temperature T using simplied Arrhenius equation based on rate constant at 20 degrees Celsius and theta parameter.
|
||||
* @param {number} k - Rate constant at 20 degrees Celcius.
|
||||
* @param {number} theta - Theta parameter.
|
||||
* @param {number} T - Temperature in Celcius.
|
||||
* @returns {number} - Adjusted rate parameter at temperature T based on the Arrhenius equation.
|
||||
*/
|
||||
_arrhenius(k, theta, T) {
|
||||
return k * Math.exp(theta*(T-20));
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the temperature theta parameter based on two rate constants and their corresponding temperatures.
|
||||
* @param {number} k1 - Rate constant at temperature T1.
|
||||
* @param {number} k2 - Rate constant at temperature T2.
|
||||
* @param {number} T1 - Temperature T1 in Celcius.
|
||||
* @param {number} T2 - Temperature T2 in Celcius.
|
||||
* @returns {number} - Theta parameter.
|
||||
*/
|
||||
_compute_theta(k1, k2, T1, T2) {
|
||||
return Math.log(k1/k2)/(T1-T2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the reaction rates for each process reaction based on the current state and temperature.
|
||||
* @param {Array} state - State vector containing concentrations of reaction species.
|
||||
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
|
||||
* @returns {Array} - Reaction rates for each process reaction.
|
||||
*/
|
||||
compute_rates(state, T = 20) {
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
const rates = Array(12);
|
||||
const [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = state;
|
||||
const { k_H, K_X, k_STO, nu_NO, K_O, K_NO, K_S, K_STO, mu_H_max, K_NH, K_HCO, b_H_O, b_H_NO, b_STO_O, b_STO_NO, mu_A_max, K_A_NH, K_A_O, K_A_HCO, b_A_O, b_A_NO } = this.kin_params;
|
||||
const { theta_H, theta_STO, theta_mu_H, theta_b_H_O, theta_b_H_NO, theta_b_STO_O, theta_b_STO_NO, theta_mu_A, theta_b_A_O, theta_b_A_NO } = this.temp_params;
|
||||
|
||||
// Hydrolysis
|
||||
rates[0] = X_H == 0 ? 0 : this._arrhenius(k_H, theta_H, T) * this._monod(X_S / X_H, K_X) * X_H;
|
||||
|
||||
// Heterotrophs
|
||||
rates[1] = this._arrhenius(k_STO, theta_STO, T) * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
|
||||
rates[2] = this._arrhenius(k_STO, theta_STO, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
|
||||
rates[3] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[4] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[5] = this._arrhenius(b_H_O, theta_b_H_O, T) * this._monod(S_O, K_O) * X_H;
|
||||
rates[6] = this._arrhenius(b_H_NO, theta_b_H_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
|
||||
rates[7] = this._arrhenius(b_STO_O, theta_b_STO_O, T) * this._monod(S_O, K_O) * X_H;
|
||||
rates[8] = this._arrhenius(b_STO_NO, theta_b_STO_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
|
||||
|
||||
// Autotrophs
|
||||
rates[9] = this._arrhenius(mu_A_max, theta_mu_A, T) * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
|
||||
rates[10] = this._arrhenius(b_A_O, theta_b_A_O, T) * this._monod(S_O, K_O) * X_A;
|
||||
rates[11] = this._arrhenius(b_A_NO, theta_b_A_NO, T) * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
|
||||
|
||||
return rates;
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the change in concentrations of reaction species based on the current state and temperature.
|
||||
* @param {Array} state - State vector containing concentrations of reaction species.
|
||||
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
|
||||
* @returns {Array} - Change in reaction species concentrations.
|
||||
*/
|
||||
compute_dC(state, T = 20) { // compute changes in concentrations
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
return math.multiply(this.stoi_matrix, this.compute_rates(state, T));
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = ASM3;
|
||||
413
src/specificClass.js
Normal file
413
src/specificClass.js
Normal file
@@ -0,0 +1,413 @@
|
||||
const ASM3 = require('./reaction_modules/asm3_class.js');
|
||||
const { create, all, isArray } = require('mathjs');
|
||||
const { assertNoNaN } = require('./utils.js');
|
||||
const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions');
|
||||
const EventEmitter = require('events');
|
||||
|
||||
const mathConfig = {
|
||||
matrix: 'Array' // use Array as the matrix type
|
||||
};
|
||||
|
||||
const math = create(all, mathConfig);
|
||||
|
||||
const S_O_INDEX = 0;
|
||||
const NUM_SPECIES = 13;
|
||||
const DEBUG = false;
|
||||
|
||||
class Reactor {
|
||||
/**
|
||||
* Reactor base class.
|
||||
* @param {object} config - Configuration object containing reactor parameters.
|
||||
*/
|
||||
constructor(config) {
|
||||
this.config = config;
|
||||
// EVOLV stuff
|
||||
this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name);
|
||||
this.emitter = new EventEmitter();
|
||||
this.measurements = new MeasurementContainer();
|
||||
this.upstreamReactor = null;
|
||||
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
|
||||
|
||||
this.asm = new ASM3();
|
||||
|
||||
this.volume = config.volume; // fluid volume reactor [m3]
|
||||
|
||||
this.Fs = Array(config.n_inlets).fill(0); // fluid debits per inlet [m3 d-1]
|
||||
this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(NUM_SPECIES).fill(0)); // composition influents
|
||||
this.OTR = 0.0; // oxygen transfer rate [g O2 d-1 m-3]
|
||||
this.temperature = 20; // temperature [C]
|
||||
|
||||
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
|
||||
|
||||
this.currentTime = Date.now(); // milliseconds since epoch [ms]
|
||||
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step [d]
|
||||
this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second
|
||||
}
|
||||
|
||||
/**
|
||||
* Setter for influent data.
|
||||
* @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
|
||||
*/
|
||||
set setInfluent(input) {
|
||||
let index_in = input.payload.inlet;
|
||||
this.Fs[index_in] = input.payload.F;
|
||||
this.Cs_in[index_in] = input.payload.C;
|
||||
}
|
||||
|
||||
/**
|
||||
* Setter for OTR (Oxygen Transfer Rate).
|
||||
* @param {object} input - Input object (msg) containing payload with OTR value [g O2 d-1 m-3].
|
||||
*/
|
||||
set setOTR(input) {
|
||||
this.OTR = input.payload;
|
||||
}
|
||||
|
||||
/**
|
||||
* Getter for effluent data.
|
||||
* @returns {object} Effluent data object (msg), defaults to inlet 0.
|
||||
*/
|
||||
get getEffluent() { // getter for Effluent, defaults to inlet 0
|
||||
if (isArray(this.state.at(-1))) {
|
||||
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state.at(-1) }, timestamp: this.currentTime };
|
||||
}
|
||||
return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state }, timestamp: this.currentTime };
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the oxygen transfer rate (OTR) based on the dissolved oxygen concentration and temperature.
|
||||
* @param {number} S_O - Dissolved oxygen concentration [g O2 m-3].
|
||||
* @param {number} T - Temperature in Celsius, default to 20 C.
|
||||
* @returns {number} - Calculated OTR [g O2 d-1 m-3].
|
||||
*/
|
||||
_calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
|
||||
let S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
|
||||
return this.kla * (S_O_sat - S_O);
|
||||
}
|
||||
|
||||
/**
|
||||
* Clip values in an array to zero.
|
||||
* @param {Array} arr - Array of values to clip.
|
||||
* @returns {Array} - New array with values clipped to zero.
|
||||
*/
|
||||
_arrayClip2Zero(arr) {
|
||||
if (Array.isArray(arr)) {
|
||||
return arr.map(x => this._arrayClip2Zero(x));
|
||||
} else {
|
||||
return arr < 0 ? 0 : arr;
|
||||
}
|
||||
}
|
||||
|
||||
registerChild(child, softwareType) {
|
||||
switch (softwareType) {
|
||||
case "measurement":
|
||||
this.logger.debug(`Registering measurement child.`);
|
||||
this._connectMeasurement(child);
|
||||
break;
|
||||
case "reactor":
|
||||
this.logger.debug(`Registering reactor child.`);
|
||||
this._connectReactor(child);
|
||||
break;
|
||||
|
||||
default:
|
||||
this.logger.error(`Unrecognized softwareType: ${softwareType}`);
|
||||
}
|
||||
}
|
||||
|
||||
_connectMeasurement(measurement) {
|
||||
if (!measurement) {
|
||||
this.logger.warn("Invalid measurement provided.");
|
||||
return;
|
||||
}
|
||||
|
||||
const position = measurement.config.functionality.positionVsParent;
|
||||
const measurementType = measurement.config.asset.type;
|
||||
const key = `${measurementType}_${position}`;
|
||||
const eventName = `${measurementType}.measured.${position}`;
|
||||
|
||||
// Register event listener for measurement updates
|
||||
this.measurements.emitter.on(eventName, (eventData) => {
|
||||
this.logger.debug(`${position} ${measurementType} from ${eventData.childName}: ${eventData.value} ${eventData.unit}`);
|
||||
|
||||
// Store directly in parent's measurement container
|
||||
this.measurements
|
||||
.type(measurementType)
|
||||
.variant("measured")
|
||||
.position(position)
|
||||
.value(eventData.value, eventData.timestamp, eventData.unit);
|
||||
|
||||
this._updateMeasurement(measurementType, eventData.value, position, eventData);
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
_connectReactor(reactor) {
|
||||
if (!reactor) {
|
||||
this.logger.warn("Invalid reactor provided.");
|
||||
return;
|
||||
}
|
||||
|
||||
this.upstreamReactor = reactor;
|
||||
|
||||
reactor.emitter.on("stateChange", (data) => {
|
||||
this.logger.debug(`State change of upstream reactor detected.`);
|
||||
this.updateState(data);
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
_updateMeasurement(measurementType, value, position, context) {
|
||||
this.logger.debug(`---------------------- updating ${measurementType} ------------------ `);
|
||||
switch (measurementType) {
|
||||
case "temperature":
|
||||
if (position == "atEquipment") {
|
||||
this.temperature = value;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
this.logger.error(`Type '${measurementType}' not recognized for measured update.`);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Update the reactor state based on the new time.
|
||||
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
|
||||
*/
|
||||
updateState(newTime = Date.now()) { // expect update with timestamp
|
||||
const day2ms = 1000 * 60 * 60 * 24;
|
||||
|
||||
if (this.upstreamReactor) {
|
||||
this.setInfluent = this.upstreamReactor.getEffluent;
|
||||
}
|
||||
|
||||
let n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*day2ms));
|
||||
if (n_iter) {
|
||||
let n = 0;
|
||||
while (n < n_iter) {
|
||||
this.tick(this.timeStep);
|
||||
n += 1;
|
||||
}
|
||||
this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
|
||||
this.emitter.emit("stateChange", this.currentTime);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class Reactor_CSTR extends Reactor {
|
||||
/**
|
||||
* Reactor_CSTR class for Continuous Stirred Tank Reactor.
|
||||
* @param {object} config - Configuration object containing reactor parameters.
|
||||
*/
|
||||
constructor(config) {
|
||||
super(config);
|
||||
this.state = config.initialState;
|
||||
}
|
||||
|
||||
/**
|
||||
* Tick the reactor state using the forward Euler method.
|
||||
* @param {number} time_step - Time step for the simulation [d].
|
||||
* @returns {Array} - New reactor state.
|
||||
*/
|
||||
tick(time_step) { // tick reactor state using forward Euler method
|
||||
const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0];
|
||||
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
|
||||
const reaction = this.asm.compute_dC(this.state, this.temperature);
|
||||
const transfer = Array(NUM_SPECIES).fill(0.0);
|
||||
transfer[S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
|
||||
|
||||
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
|
||||
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
|
||||
if(DEBUG){
|
||||
assertNoNaN(dC_total, "change in state");
|
||||
assertNoNaN(this.state, "new state");
|
||||
}
|
||||
return this.state;
|
||||
}
|
||||
}
|
||||
|
||||
class Reactor_PFR extends Reactor {
|
||||
/**
|
||||
* Reactor_PFR class for Plug Flow Reactor.
|
||||
* @param {object} config - Configuration object containing reactor parameters.
|
||||
*/
|
||||
constructor(config) {
|
||||
super(config);
|
||||
|
||||
this.length = config.length; // reactor length [m]
|
||||
this.n_x = config.resolution_L; // number of slices
|
||||
|
||||
this.d_x = this.length / this.n_x;
|
||||
this.A = this.volume / this.length; // crosssectional area [m2]
|
||||
|
||||
this.alpha = config.alpha;
|
||||
|
||||
this.state = Array.from(Array(this.n_x), () => config.initialState.slice())
|
||||
|
||||
this.D = 0.0; // axial dispersion [m2 d-1]
|
||||
|
||||
this.D_op = this._makeDoperator(true, true);
|
||||
assertNoNaN(this.D_op, "Derivative operator");
|
||||
|
||||
this.D2_op = this._makeD2operator();
|
||||
assertNoNaN(this.D2_op, "Second derivative operator");
|
||||
}
|
||||
|
||||
/**
|
||||
* Setter for axial dispersion.
|
||||
* @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1].
|
||||
*/
|
||||
set setDispersion(input) {
|
||||
this.D = input.payload;
|
||||
}
|
||||
|
||||
updateState(newTime) {
|
||||
super.updateState(newTime);
|
||||
let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
|
||||
let Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
|
||||
|
||||
(Pe_local >= 2) && this.logger.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
|
||||
(Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
|
||||
|
||||
if(DEBUG) {
|
||||
console.log("Inlet state max " + math.max(this.state[0]))
|
||||
console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A));
|
||||
console.log("Pe local " + Pe_local);
|
||||
console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x));
|
||||
console.log("Co D " + Co_D);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Tick the reactor state using explicit finite difference method.
|
||||
* @param {number} time_step - Time step for the simulation [d].
|
||||
* @returns {Array} - New reactor state.
|
||||
*/
|
||||
tick(time_step) {
|
||||
const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
|
||||
const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.state);
|
||||
const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
|
||||
const transfer = Array.from(Array(this.n_x), () => new Array(NUM_SPECIES).fill(0));
|
||||
|
||||
if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
|
||||
for (let i = 1; i < this.n_x - 1; i++) {
|
||||
transfer[i][S_O_INDEX] = this.OTR * this.n_x/(this.n_x-2);
|
||||
}
|
||||
} else {
|
||||
for (let i = 1; i < this.n_x - 1; i++) {
|
||||
transfer[i][S_O_INDEX] = this._calcOTR(this.state[i][S_O_INDEX], this.temperature) * this.n_x/(this.n_x-2);
|
||||
}
|
||||
}
|
||||
|
||||
const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step);
|
||||
|
||||
const stateNew = math.add(this.state, dC_total);
|
||||
this._applyBoundaryConditions(stateNew);
|
||||
|
||||
if (DEBUG) {
|
||||
assertNoNaN(dispersion, "dispersion");
|
||||
assertNoNaN(advection, "advection");
|
||||
assertNoNaN(reaction, "reaction");
|
||||
assertNoNaN(dC_total, "change in state");
|
||||
assertNoNaN(stateNew, "new state post BC");
|
||||
}
|
||||
|
||||
this.state = this._arrayClip2Zero(stateNew);
|
||||
return stateNew;
|
||||
}
|
||||
|
||||
_updateMeasurement(measurementType, value, position, context) {
|
||||
switch(measurementType) {
|
||||
case "oxygen":
|
||||
grid_pos = Math.round(position * this.n_x);
|
||||
this.state[grid_pos][S_O_INDEX] = value; // naive approach for reconciling measurements and simulation
|
||||
break;
|
||||
}
|
||||
super._updateMeasurement(measurementType, value, position, context);
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply boundary conditions to the reactor state.
|
||||
* for inlet, apply generalised Danckwerts BC, if there is not flow, apply Neumann BC with no flux
|
||||
* for outlet, apply regular Danckwerts BC (Neumann BC with no flux)
|
||||
* @param {Array} state - Current reactor state without enforced BCs.
|
||||
*/
|
||||
_applyBoundaryConditions(state) {
|
||||
if (math.sum(this.Fs) > 0) { // Danckwerts BC
|
||||
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
|
||||
const BC_dispersion_term = (1-this.alpha)*this.D*this.A/(math.sum(this.Fs)*this.d_x);
|
||||
state[0] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, state[1])));
|
||||
} else {
|
||||
state[0] = state[1];
|
||||
}
|
||||
// Neumann BC (no flux)
|
||||
state[this.n_x-1] = state[this.n_x-2];
|
||||
}
|
||||
|
||||
/**
|
||||
* Create finite difference first derivative operator.
|
||||
* @param {boolean} central - Use central difference scheme if true, otherwise use upwind scheme.
|
||||
* @param {boolean} higher_order - Use higher order scheme if true, otherwise use first order scheme.
|
||||
* @returns {Array} - First derivative operator matrix.
|
||||
*/
|
||||
_makeDoperator(central = false, higher_order = false) { // create gradient operator
|
||||
if (higher_order) {
|
||||
if (central) {
|
||||
const I = math.resize(math.diag(Array(this.n_x).fill(1/12), -2), [this.n_x, this.n_x]);
|
||||
const A = math.resize(math.diag(Array(this.n_x).fill(-2/3), -1), [this.n_x, this.n_x]);
|
||||
const B = math.resize(math.diag(Array(this.n_x).fill(2/3), 1), [this.n_x, this.n_x]);
|
||||
const C = math.resize(math.diag(Array(this.n_x).fill(-1/12), 2), [this.n_x, this.n_x]);
|
||||
const D = math.add(I, A, B, C);
|
||||
const NearBoundary = Array(this.n_x).fill(0.0);
|
||||
NearBoundary[0] = -1/4;
|
||||
NearBoundary[1] = -5/6;
|
||||
NearBoundary[2] = 3/2;
|
||||
NearBoundary[3] = -1/2;
|
||||
NearBoundary[4] = 1/12;
|
||||
D[1] = NearBoundary;
|
||||
NearBoundary.reverse();
|
||||
D[this.n_x-2] = math.multiply(-1, NearBoundary);
|
||||
D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
|
||||
D[this.n_x-1] = Array(this.n_x).fill(0);
|
||||
return D;
|
||||
} else {
|
||||
throw new Error("Upwind higher order method not implemented! Use central scheme instead.");
|
||||
}
|
||||
} else {
|
||||
const I = math.resize(math.diag(Array(this.n_x).fill(1 / (1+central)), central), [this.n_x, this.n_x]);
|
||||
const A = math.resize(math.diag(Array(this.n_x).fill(-1 / (1+central)), -1), [this.n_x, this.n_x]);
|
||||
const D = math.add(I, A);
|
||||
D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
|
||||
D[this.n_x-1] = Array(this.n_x).fill(0);
|
||||
return D;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create central finite difference second derivative operator.
|
||||
* @returns {Array} - Second derivative operator matrix.
|
||||
*/
|
||||
_makeD2operator() { // create the central second derivative operator
|
||||
const I = math.diag(Array(this.n_x).fill(-2), 0);
|
||||
const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]);
|
||||
const B = math.resize(math.diag(Array(this.n_x).fill(1), -1), [this.n_x, this.n_x]);
|
||||
const D2 = math.add(I, A, B);
|
||||
D2[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
|
||||
D2[this.n_x - 1] = Array(this.n_x).fill(0);
|
||||
return D2;
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { Reactor_CSTR, Reactor_PFR };
|
||||
|
||||
// DEBUG
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
// let initial_state = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
|
||||
// const Reactor = new Reactor_PFR(200, 10, 10, 1, 100, initial_state);
|
||||
// Reactor.Cs_in[0] = [0.0, 30., 100., 16., 0., 0., 5., 25., 75., 30., 0., 0., 125.];
|
||||
// Reactor.Fs[0] = 10;
|
||||
// Reactor.D = 0.01;
|
||||
// let N = 0;
|
||||
// while (N < 5000) {
|
||||
// console.log(Reactor.tick(0.001));
|
||||
// N += 1;
|
||||
// }
|
||||
18
src/utils.js
Normal file
18
src/utils.js
Normal file
@@ -0,0 +1,18 @@
|
||||
/**
|
||||
* Assert that no NaN values are present in an array.
|
||||
* @param {Array} arr
|
||||
* @param {string} label
|
||||
*/
|
||||
function assertNoNaN(arr, label = "array") {
|
||||
if (Array.isArray(arr)) {
|
||||
for (const el of arr) {
|
||||
assertNoNaN(el, label);
|
||||
}
|
||||
} else {
|
||||
if (Number.isNaN(arr)) {
|
||||
throw new Error(`NaN detected in ${label}!`);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { assertNoNaN };
|
||||
Reference in New Issue
Block a user