Add temperature theta parameters and adjust reaction rate calculations in ASM3 class
This commit is contained in:
@@ -69,6 +69,28 @@ class ASM3 {
|
||||
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
|
||||
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
|
||||
};
|
||||
|
||||
/**
|
||||
* Temperature theta parameters for ASM3.
|
||||
* These parameters are used to adjust reaction rates based on temperature.
|
||||
* @property {Object} temp_params - Temperature theta parameters
|
||||
*/
|
||||
this.temp_params = {
|
||||
// Hydrolysis
|
||||
theta_H: this._compute_theta(2, 3, 10, 20),
|
||||
// Heterotrophs
|
||||
theta_STO: this._compute_theta(2.5, 5, 10, 20),
|
||||
theta_mu_H: this._compute_theta(1, 2, 10, 20),
|
||||
theta_b_H_O: this._compute_theta(0.1, 0.2, 10, 20),
|
||||
theta_b_H_NO: this._compute_theta(0.05, 0.1, 10, 20),
|
||||
theta_b_STO_O: this._compute_theta(0.1, 0.2, 10, 20),
|
||||
theta_b_STO_NO: this._compute_theta(0.05, 0.1, 10, 20),
|
||||
// Autotrophs
|
||||
theta_mu_A: this._compute_theta(0.35, 1, 10, 20),
|
||||
theta_b_A_O: this._compute_theta(0.05, 0.15, 10, 20),
|
||||
theta_b_A_NO: this._compute_theta(0.02, 0.05, 10, 20)
|
||||
};
|
||||
|
||||
this.stoi_matrix = this._initialise_stoi_matrix();
|
||||
}
|
||||
|
||||
@@ -118,45 +140,71 @@ class ASM3 {
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the reaction rates for each process reaction based on the current state.
|
||||
* Adjust the rate parameter for temperature T using simplied Arrhenius equation based on rate constant at 20 degrees Celsius and theta parameter.
|
||||
* @param {number} k - Rate constant at 20 degrees Celcius.
|
||||
* @param {number} theta - Theta parameter.
|
||||
* @param {number} T - Temperature in Celcius.
|
||||
* @returns {number} - Adjusted rate parameter at temperature T based on the Arrhenius equation.
|
||||
*/
|
||||
_arrhenius(k, theta, T) {
|
||||
return k * Math.exp(theta*(T-20));
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the temperature theta parameter based on two rate constants and their corresponding temperatures.
|
||||
* @param {number} k1 - Rate constant at temperature T1.
|
||||
* @param {number} k2 - Rate constant at temperature T2.
|
||||
* @param {number} T1 - Temperature T1 in Celcius.
|
||||
* @param {number} T2 - Temperature T2 in Celcius.
|
||||
* @returns {number} - Theta parameter.
|
||||
*/
|
||||
_compute_theta(k1, k2, T1, T2) {
|
||||
return Math.log(k1/k2)/(T1-T2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the reaction rates for each process reaction based on the current state and temperature.
|
||||
* @param {Array} state - State vector containing concentrations of reaction species.
|
||||
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
|
||||
* @returns {Array} - Reaction rates for each process reaction.
|
||||
*/
|
||||
compute_rates(state) {
|
||||
compute_rates(state, T = 20) {
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
const rates = Array(12);
|
||||
const [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = state;
|
||||
const { k_H, K_X, k_STO, nu_NO, K_O, K_NO, K_S, K_STO, mu_H_max, K_NH, K_HCO, b_H_O, b_H_NO, b_STO_O, b_STO_NO, mu_A_max, K_A_NH, K_A_O, K_A_HCO, b_A_O, b_A_NO } = this.kin_params;
|
||||
const { theta_H, theta_STO, theta_mu_H, theta_b_H_O, theta_b_H_NO, theta_b_STO_O, theta_b_STO_NO, theta_mu_A, theta_b_A_O, theta_b_A_NO } = this.temp_params;
|
||||
|
||||
// Hydrolysis
|
||||
rates[0] = X_H == 0 ? 0 : k_H * this._monod(X_S / X_H, K_X) * X_H;
|
||||
rates[0] = X_H == 0 ? 0 : this._arrhenius(k_H, theta_H, T) * this._monod(X_S / X_H, K_X) * X_H;
|
||||
|
||||
// Heterotrophs
|
||||
rates[1] = k_STO * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
|
||||
rates[2] = k_STO * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
|
||||
rates[3] = X_H == 0 ? 0 : mu_H_max * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[4] = X_H == 0 ? 0 : mu_H_max * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[5] = b_H_O * this._monod(S_O, K_O) * X_H;
|
||||
rates[6] = b_H_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
|
||||
rates[7] = b_STO_O * this._monod(S_O, K_O) * X_H;
|
||||
rates[8] = b_STO_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
|
||||
rates[1] = this._arrhenius(k_STO, theta_STO, T) * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
|
||||
rates[2] = this._arrhenius(k_STO, theta_STO, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
|
||||
rates[3] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[4] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
|
||||
rates[5] = this._arrhenius(b_H_O, theta_b_H_O, T) * this._monod(S_O, K_O) * X_H;
|
||||
rates[6] = this._arrhenius(b_H_NO, theta_b_H_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
|
||||
rates[7] = this._arrhenius(b_STO_O, theta_b_STO_O, T) * this._monod(S_O, K_O) * X_H;
|
||||
rates[8] = this._arrhenius(b_STO_NO, theta_b_STO_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
|
||||
|
||||
// Autotrophs
|
||||
rates[9] = mu_A_max * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
|
||||
rates[10] = b_A_O * this._monod(S_O, K_O) * X_A;
|
||||
rates[11] = b_A_NO * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
|
||||
rates[9] = this._arrhenius(mu_A_max, theta_mu_A, T) * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
|
||||
rates[10] = this._arrhenius(b_A_O, theta_b_A_O, T) * this._monod(S_O, K_O) * X_A;
|
||||
rates[11] = this._arrhenius(b_A_NO, theta_b_A_NO, T) * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
|
||||
|
||||
return rates;
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the change in concentrations of reaction species based on the current state.
|
||||
* Computes the change in concentrations of reaction species based on the current state and temperature.
|
||||
* @param {Array} state - State vector containing concentrations of reaction species.
|
||||
* @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
|
||||
* @returns {Array} - Change in reaction species concentrations.
|
||||
*/
|
||||
compute_dC(state) { // compute changes in concentrations
|
||||
compute_dC(state, T = 20) { // compute changes in concentrations
|
||||
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
|
||||
return math.multiply(this.stoi_matrix, this.compute_rates(state));
|
||||
return math.multiply(this.stoi_matrix, this.compute_rates(state, T));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user