From c1e331b5f0134070b51d6a3f2762442d1aa87543 Mon Sep 17 00:00:00 2001
From: "p.vanderwilt"
Date: Tue, 8 Jul 2025 11:02:39 +0200
Subject: [PATCH] Add temperature theta parameters and adjust reaction rate
calculations in ASM3 class
---
src/reaction_modules/asm3_class.js | 88 +++++++++++++++++++++++-------
1 file changed, 68 insertions(+), 20 deletions(-)
diff --git a/src/reaction_modules/asm3_class.js b/src/reaction_modules/asm3_class.js
index ab272dc..d228619 100644
--- a/src/reaction_modules/asm3_class.js
+++ b/src/reaction_modules/asm3_class.js
@@ -69,6 +69,28 @@ class ASM3 {
i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
};
+
+ /**
+ * Temperature theta parameters for ASM3.
+ * These parameters are used to adjust reaction rates based on temperature.
+ * @property {Object} temp_params - Temperature theta parameters
+ */
+ this.temp_params = {
+ // Hydrolysis
+ theta_H: this._compute_theta(2, 3, 10, 20),
+ // Heterotrophs
+ theta_STO: this._compute_theta(2.5, 5, 10, 20),
+ theta_mu_H: this._compute_theta(1, 2, 10, 20),
+ theta_b_H_O: this._compute_theta(0.1, 0.2, 10, 20),
+ theta_b_H_NO: this._compute_theta(0.05, 0.1, 10, 20),
+ theta_b_STO_O: this._compute_theta(0.1, 0.2, 10, 20),
+ theta_b_STO_NO: this._compute_theta(0.05, 0.1, 10, 20),
+ // Autotrophs
+ theta_mu_A: this._compute_theta(0.35, 1, 10, 20),
+ theta_b_A_O: this._compute_theta(0.05, 0.15, 10, 20),
+ theta_b_A_NO: this._compute_theta(0.02, 0.05, 10, 20)
+ };
+
this.stoi_matrix = this._initialise_stoi_matrix();
}
@@ -103,7 +125,7 @@ class ASM3 {
* @param {number} K - Half-saturation constant for the reaction species.
* @returns {number} - Monod equation rate value for the given concentration and half-saturation constant.
*/
- _monod(c, K){
+ _monod(c, K) {
return c / (K + c);
}
@@ -113,50 +135,76 @@ class ASM3 {
* @param {number} K - Half-saturation constant for the reaction species.
* @returns {number} - Inverse Monod equation rate value for the given concentration and half-saturation constant.
*/
- _inv_monod(c, K){
+ _inv_monod(c, K) {
return K / (K + c);
}
/**
- * Computes the reaction rates for each process reaction based on the current state.
+ * Adjust the rate parameter for temperature T using simplied Arrhenius equation based on rate constant at 20 degrees Celsius and theta parameter.
+ * @param {number} k - Rate constant at 20 degrees Celcius.
+ * @param {number} theta - Theta parameter.
+ * @param {number} T - Temperature in Celcius.
+ * @returns {number} - Adjusted rate parameter at temperature T based on the Arrhenius equation.
+ */
+ _arrhenius(k, theta, T) {
+ return k * Math.exp(theta*(T-20));
+ }
+
+ /**
+ * Computes the temperature theta parameter based on two rate constants and their corresponding temperatures.
+ * @param {number} k1 - Rate constant at temperature T1.
+ * @param {number} k2 - Rate constant at temperature T2.
+ * @param {number} T1 - Temperature T1 in Celcius.
+ * @param {number} T2 - Temperature T2 in Celcius.
+ * @returns {number} - Theta parameter.
+ */
+ _compute_theta(k1, k2, T1, T2) {
+ return Math.log(k1/k2)/(T1-T2);
+ }
+
+ /**
+ * Computes the reaction rates for each process reaction based on the current state and temperature.
* @param {Array} state - State vector containing concentrations of reaction species.
+ * @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
* @returns {Array} - Reaction rates for each process reaction.
*/
- compute_rates(state) {
+ compute_rates(state, T = 20) {
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
const rates = Array(12);
const [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = state;
const { k_H, K_X, k_STO, nu_NO, K_O, K_NO, K_S, K_STO, mu_H_max, K_NH, K_HCO, b_H_O, b_H_NO, b_STO_O, b_STO_NO, mu_A_max, K_A_NH, K_A_O, K_A_HCO, b_A_O, b_A_NO } = this.kin_params;
-
+ const { theta_H, theta_STO, theta_mu_H, theta_b_H_O, theta_b_H_NO, theta_b_STO_O, theta_b_STO_NO, theta_mu_A, theta_b_A_O, theta_b_A_NO } = this.temp_params;
+
// Hydrolysis
- rates[0] = X_H == 0 ? 0 : k_H * this._monod(X_S / X_H, K_X) * X_H;
+ rates[0] = X_H == 0 ? 0 : this._arrhenius(k_H, theta_H, T) * this._monod(X_S / X_H, K_X) * X_H;
// Heterotrophs
- rates[1] = k_STO * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
- rates[2] = k_STO * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
- rates[3] = X_H == 0 ? 0 : mu_H_max * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
- rates[4] = X_H == 0 ? 0 : mu_H_max * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
- rates[5] = b_H_O * this._monod(S_O, K_O) * X_H;
- rates[6] = b_H_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
- rates[7] = b_STO_O * this._monod(S_O, K_O) * X_H;
- rates[8] = b_STO_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
+ rates[1] = this._arrhenius(k_STO, theta_STO, T) * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
+ rates[2] = this._arrhenius(k_STO, theta_STO, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
+ rates[3] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
+ rates[4] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
+ rates[5] = this._arrhenius(b_H_O, theta_b_H_O, T) * this._monod(S_O, K_O) * X_H;
+ rates[6] = this._arrhenius(b_H_NO, theta_b_H_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
+ rates[7] = this._arrhenius(b_STO_O, theta_b_STO_O, T) * this._monod(S_O, K_O) * X_H;
+ rates[8] = this._arrhenius(b_STO_NO, theta_b_STO_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
// Autotrophs
- rates[9] = mu_A_max * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
- rates[10] = b_A_O * this._monod(S_O, K_O) * X_A;
- rates[11] = b_A_NO * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
+ rates[9] = this._arrhenius(mu_A_max, theta_mu_A, T) * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
+ rates[10] = this._arrhenius(b_A_O, theta_b_A_O, T) * this._monod(S_O, K_O) * X_A;
+ rates[11] = this._arrhenius(b_A_NO, theta_b_A_NO, T) * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
return rates;
}
/**
- * Computes the change in concentrations of reaction species based on the current state.
+ * Computes the change in concentrations of reaction species based on the current state and temperature.
* @param {Array} state - State vector containing concentrations of reaction species.
+ * @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
* @returns {Array} - Change in reaction species concentrations.
*/
- compute_dC(state) { // compute changes in concentrations
+ compute_dC(state, T = 20) { // compute changes in concentrations
// state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
- return math.multiply(this.stoi_matrix, this.compute_rates(state));
+ return math.multiply(this.stoi_matrix, this.compute_rates(state, T));
}
}