From a8928e50cc4299adc03f337a06565219459bd466 Mon Sep 17 00:00:00 2001
From: "p.vanderwilt"
Date: Mon, 18 Aug 2025 16:43:16 +0200
Subject: [PATCH] Add Koch parameters
---
src/reaction_modules/asm3_class Koch.js | 211 ++++++++++++++++++++++++
1 file changed, 211 insertions(+)
create mode 100644 src/reaction_modules/asm3_class Koch.js
diff --git a/src/reaction_modules/asm3_class Koch.js b/src/reaction_modules/asm3_class Koch.js
new file mode 100644
index 0000000..a873425
--- /dev/null
+++ b/src/reaction_modules/asm3_class Koch.js
@@ -0,0 +1,211 @@
+const math = require('mathjs')
+
+/**
+ * ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
+ */
+class ASM3 {
+
+ constructor() {
+ /**
+ * Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
+ * @property {Object} kin_params - Kinetic parameters
+ */
+ this.kin_params = {
+ // Hydrolysis
+ k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
+ K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
+ // Heterotrophs
+ k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
+ nu_NO: 0.5, // anoxic reduction factor [-]
+ K_O: 0.2, // saturation constant S_0 [g O2 m-3]
+ K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
+ K_S: 10., // saturation constant S_s [g COD m-3]
+ K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
+ mu_H_max: 3., // maximum specific growth rate [d-1]
+ K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
+ K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
+ b_H_O: 0.3, // aerobic respiration rate [d-1]
+ b_H_NO: 0.15, // anoxic respiration rate [d-1]
+ b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
+ b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
+ // Autotrophs
+ mu_A_max: 1.3, // maximum specific growth rate [d-1]
+ K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
+ K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
+ K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
+ b_A_O: 0.20, // aerobic respiration rate [d-1]
+ b_A_NO: 0.10 // anoxic respiration rate [d-1]
+ };
+
+ /**
+ * Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
+ * @property {Object} stoi_params - Stoichiometric parameters
+ */
+ this.stoi_params = {
+ // Fractions
+ f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
+ f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
+ // Yields
+ Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
+ Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
+ Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
+ Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
+ Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
+ // Composition (COD via DoR)
+ i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
+ i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
+ // Composition (nitrogen)
+ i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
+ i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
+ i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
+ i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
+ i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
+ // Composition (TSS)
+ i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
+ i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
+ i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
+ i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
+ // Composition (charge)
+ i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
+ i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
+ };
+
+ /**
+ * Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters.
+ * These parameters are used to adjust reaction rates based on temperature.
+ * @property {Object} temp_params - Temperature theta parameters
+ */
+ this.temp_params = {
+ // Hydrolysis
+ theta_H: 0.04,
+ // Heterotrophs
+ theta_STO: 0.07,
+ theta_mu_H: 0.07,
+ theta_b_H_O: 0.07,
+ theta_b_H_NO: 0.07,
+ theta_b_STO_O: this._compute_theta(0.1, 0.2, 10, 20),
+ theta_b_STO_NO: this._compute_theta(0.05, 0.1, 10, 20),
+ // Autotrophs
+ theta_mu_A: 0.105,
+ theta_b_A_O: 0.105,
+ theta_b_A_NO: 0.105
+ };
+
+ this.stoi_matrix = this._initialise_stoi_matrix();
+ }
+
+ /**
+ * Initialises the stoichiometric matrix for ASM3.
+ * @returns {Array} - The stoichiometric matrix for ASM3. (2D array)
+ */
+ _initialise_stoi_matrix() { // initialise stoichiometric matrix
+ const { f_SI, f_XI, Y_STO_O, Y_STO_NO, Y_H_O, Y_H_NO, Y_A, i_CODN, i_CODNO, i_NSI, i_NSS, i_NXI, i_NXS, i_NBM, i_TSXI, i_TSXS, i_TSBM, i_TSSTO, i_cNH, i_cNO } = this.stoi_params;
+
+ const stoi_matrix = Array(12);
+ // S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
+ stoi_matrix[0] = [0., f_SI, 1.-f_SI, i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI, 0., 0., (i_NXS-(1.-f_SI)*i_NSS-f_SI*i_NSI)*i_cNH, 0., -1., 0., 0., 0., -i_TSXS];
+ stoi_matrix[1] = [-(1.-Y_STO_O), 0, -1., i_NSS, 0., 0., i_NSS*i_cNH, 0., 0., 0., Y_STO_O, 0., Y_STO_O*i_TSSTO];
+ stoi_matrix[2] = [0., 0., -1., i_NSS, -(1.-Y_STO_NO)/(i_CODNO-i_CODN), (1.-Y_STO_NO)/(i_CODNO-i_CODN), i_NSS*i_cNH + (1.-Y_STO_NO)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., Y_STO_NO, 0., Y_STO_NO*i_TSSTO];
+ stoi_matrix[3] = [-(1.-Y_H_O)/Y_H_O, 0., 0., -i_NBM, 0., 0., -i_NBM*i_cNH, 0., 0., 1., -1./Y_H_O, 0., i_TSBM-i_TSSTO/Y_H_O];
+ stoi_matrix[4] = [0., 0., 0., -i_NBM, -(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), (1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN)), -i_NBM*i_cNH+(1.-Y_H_NO)/(Y_H_NO*(i_CODNO-i_CODN))*i_cNO, 0., 0., 1., -1./Y_H_NO, 0., i_TSBM-i_TSSTO/Y_H_NO];
+ stoi_matrix[5] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
+ stoi_matrix[6] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, f_XI, 0., -1., 0., 0., f_XI*i_TSXI-i_TSBM];
+ stoi_matrix[7] = [-1., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., -i_TSSTO];
+ stoi_matrix[8] = [0., 0., 0., 0., -1./(i_CODNO-i_CODN), 1./(i_CODNO-i_CODN), i_cNO/(i_CODNO-i_CODN), 0., 0., 0., -1., 0., -i_TSSTO];
+ stoi_matrix[9] = [1.+i_CODNO/Y_A, 0., 0., -1./Y_A-i_NBM, 0., 1./Y_A, (-1./Y_A-i_NBM)*i_cNH+i_cNO/Y_A, 0., 0., 0., 0., 1., i_TSBM];
+ stoi_matrix[10] = [f_XI-1., 0., 0., i_NBM-f_XI*i_NXI, 0., 0., (i_NBM-f_XI*i_NXI)*i_cNH, f_XI, 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
+ stoi_matrix[11] = [0., 0., 0., i_NBM-f_XI*i_NXI, -(1.-f_XI)/(i_CODNO-i_CODN), (1.-f_XI)/(i_CODNO-i_CODN), (i_NBM-f_XI*i_NXI)*i_cNH+(1-f_XI)/(i_CODNO-i_CODN)*i_cNO, 0., 0., 0., 0., -1., f_XI*i_TSXI-i_TSBM];
+
+ return stoi_matrix[0].map((col, i) => stoi_matrix.map(row => row[i])); // transpose matrix
+ }
+
+ /**
+ * Computes the Monod equation rate value for a given concentration and half-saturation constant.
+ * @param {number} c - Concentration of reaction species.
+ * @param {number} K - Half-saturation constant for the reaction species.
+ * @returns {number} - Monod equation rate value for the given concentration and half-saturation constant.
+ */
+ _monod(c, K) {
+ return c / (K + c);
+ }
+
+ /**
+ * Computes the inverse Monod equation rate value for a given concentration and half-saturation constant. Used for inhibition.
+ * @param {number} c - Concentration of reaction species.
+ * @param {number} K - Half-saturation constant for the reaction species.
+ * @returns {number} - Inverse Monod equation rate value for the given concentration and half-saturation constant.
+ */
+ _inv_monod(c, K) {
+ return K / (K + c);
+ }
+
+ /**
+ * Adjust the rate parameter for temperature T using simplied Arrhenius equation based on rate constant at 20 degrees Celsius and theta parameter.
+ * @param {number} k - Rate constant at 20 degrees Celcius.
+ * @param {number} theta - Theta parameter.
+ * @param {number} T - Temperature in Celcius.
+ * @returns {number} - Adjusted rate parameter at temperature T based on the Arrhenius equation.
+ */
+ _arrhenius(k, theta, T) {
+ return k * Math.exp(theta*(T-20));
+ }
+
+ /**
+ * Computes the temperature theta parameter based on two rate constants and their corresponding temperatures.
+ * @param {number} k1 - Rate constant at temperature T1.
+ * @param {number} k2 - Rate constant at temperature T2.
+ * @param {number} T1 - Temperature T1 in Celcius.
+ * @param {number} T2 - Temperature T2 in Celcius.
+ * @returns {number} - Theta parameter.
+ */
+ _compute_theta(k1, k2, T1, T2) {
+ return Math.log(k1/k2)/(T1-T2);
+ }
+
+ /**
+ * Computes the reaction rates for each process reaction based on the current state and temperature.
+ * @param {Array} state - State vector containing concentrations of reaction species.
+ * @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
+ * @returns {Array} - Reaction rates for each process reaction.
+ */
+ compute_rates(state, T = 20) {
+ // state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
+ const rates = Array(12);
+ const [S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS] = state;
+ const { k_H, K_X, k_STO, nu_NO, K_O, K_NO, K_S, K_STO, mu_H_max, K_NH, K_HCO, b_H_O, b_H_NO, b_STO_O, b_STO_NO, mu_A_max, K_A_NH, K_A_O, K_A_HCO, b_A_O, b_A_NO } = this.kin_params;
+ const { theta_H, theta_STO, theta_mu_H, theta_b_H_O, theta_b_H_NO, theta_b_STO_O, theta_b_STO_NO, theta_mu_A, theta_b_A_O, theta_b_A_NO } = this.temp_params;
+
+ // Hydrolysis
+ rates[0] = X_H == 0 ? 0 : this._arrhenius(k_H, theta_H, T) * this._monod(X_S / X_H, K_X) * X_H;
+
+ // Heterotrophs
+ rates[1] = this._arrhenius(k_STO, theta_STO, T) * this._monod(S_O, K_O) * this._monod(S_S, K_S) * X_H;
+ rates[2] = this._arrhenius(k_STO, theta_STO, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_S, K_S) * X_H;
+ rates[3] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * this._monod(S_O, K_O) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
+ rates[4] = X_H == 0 ? 0 : this._arrhenius(mu_H_max, theta_mu_H, T) * nu_NO * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * this._monod(S_NH, K_NH) * this._monod(S_HCO, K_HCO) * this._monod(X_STO/X_H, K_STO) * X_H;
+ rates[5] = this._arrhenius(b_H_O, theta_b_H_O, T) * this._monod(S_O, K_O) * X_H;
+ rates[6] = this._arrhenius(b_H_NO, theta_b_H_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_H;
+ rates[7] = this._arrhenius(b_STO_O, theta_b_STO_O, T) * this._monod(S_O, K_O) * X_H;
+ rates[8] = this._arrhenius(b_STO_NO, theta_b_STO_NO, T) * this._inv_monod(S_O, K_O) * this._monod(S_NO, K_NO) * X_STO;
+
+ // Autotrophs
+ rates[9] = this._arrhenius(mu_A_max, theta_mu_A, T) * this._monod(S_O, K_A_O) * this._monod(S_NH, K_A_NH) * this._monod(S_HCO, K_A_HCO) * X_A;
+ rates[10] = this._arrhenius(b_A_O, theta_b_A_O, T) * this._monod(S_O, K_O) * X_A;
+ rates[11] = this._arrhenius(b_A_NO, theta_b_A_NO, T) * this._inv_monod(S_O, K_A_O) * this._monod(S_NO, K_NO) * X_A;
+
+ return rates;
+ }
+
+ /**
+ * Computes the change in concentrations of reaction species based on the current state and temperature.
+ * @param {Array} state - State vector containing concentrations of reaction species.
+ * @param {number} [T=20] - Temperature in degrees Celsius (default is 20).
+ * @returns {Array} - Change in reaction species concentrations.
+ */
+ compute_dC(state, T = 20) { // compute changes in concentrations
+ // state: S_O, S_I, S_S, S_NH, S_N2, S_NO, S_HCO, X_I, X_S, X_H, X_STO, X_A, X_TS
+ return math.multiply(this.stoi_matrix, this.compute_rates(state, T));
+ }
+}
+
+module.exports = ASM3;
\ No newline at end of file