diff --git a/reactor.html b/reactor.html
index e8c57c5..1b122db 100644
--- a/reactor.html
+++ b/reactor.html
@@ -102,6 +102,19 @@
} else {
$(".PFR").show();
}
+
+ const updateDx = () => {
+ const length = parseFloat($("#node-input-length").val()) || 0;
+ const resolution = parseFloat($("#node-input-resolution_L").val()) || 1;
+ const dx = resolution > 0 ? (length / resolution).toFixed(6) : "N/A";
+ $("#dx-output").text(dx + " m");
+ };
+
+ // Set up event listeners for real-time updates
+ $("#node-input-length, #node-input-resolution_L").on("change keyup", updateDx);
+
+ // Initial calculation
+ updateDx();
},
oneditsave: function() {
// save logger fields
@@ -144,6 +157,10 @@
+
+
+ --
+
Internal mass transfer calculation (optional)
diff --git a/src/nodeClass.js b/src/nodeClass.js
index cc42911..f98b5fe 100644
--- a/src/nodeClass.js
+++ b/src/nodeClass.js
@@ -34,7 +34,6 @@ class nodeClass {
switch (msg.topic) {
case "clock":
this.source.updateState(msg.timestamp);
- send([msg, null, null]);
break;
case "Fluent":
this.source.setInfluent = msg;
@@ -42,9 +41,6 @@ class nodeClass {
case "OTR":
this.source.setOTR = msg;
break;
- case "Temperature":
- this.source.setTemperature = msg;
- break;
case "Dispersion":
this.source.setDispersion = msg;
break;
diff --git a/src/reaction_modules/asm3_class Koch.js b/src/reaction_modules/asm3_class Koch.js
index 741c3e7..ff6a8d2 100644
--- a/src/reaction_modules/asm3_class Koch.js
+++ b/src/reaction_modules/asm3_class Koch.js
@@ -7,6 +7,62 @@ const ASM_CONSTANTS = {
NUM_SPECIES: 13
};
+const KINETIC_CONSTANTS = {
+ // Hydrolysis
+ k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
+ K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
+ // Heterotrophs
+ k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
+ nu_NO: 0.5, // anoxic reduction factor [-]
+ K_O: 0.2, // saturation constant S_0 [g O2 m-3]
+ K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
+ K_S: 10., // saturation constant S_s [g COD m-3]
+ K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
+ mu_H_max: 3., // maximum specific growth rate [d-1]
+ K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
+ K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
+ b_H_O: 0.3, // aerobic respiration rate [d-1]
+ b_H_NO: 0.15, // anoxic respiration rate [d-1]
+ b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
+ b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
+ // Autotrophs
+ mu_A_max: 1.3, // maximum specific growth rate [d-1]
+ K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
+ K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
+ K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
+ b_A_O: 0.20, // aerobic respiration rate [d-1]
+ b_A_NO: 0.10 // anoxic respiration rate [d-1]
+};
+
+const STOICHIOMETRIC_CONSTANTS = {
+ // Fractions
+ f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
+ f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
+ // Yields
+ Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
+ Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
+ Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
+ Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
+ Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
+ // Composition (COD via DoR)
+ i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
+ i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
+ // Composition (nitrogen)
+ i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
+ i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
+ i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
+ i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
+ i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
+ // Composition (TSS)
+ i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
+ i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
+ i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
+ i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
+ // Composition (charge)
+ i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
+ i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
+};
+
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3). Using Koch et al. 2000 parameters.
*/
@@ -17,65 +73,13 @@ class ASM3 {
* Kinetic parameters for ASM3 at 20 C. Using Koch et al. 2000 parameters.
* @property {Object} kin_params - Kinetic parameters
*/
- this.kin_params = {
- // Hydrolysis
- k_H: 9., // hydrolysis rate constant [g X_S g-1 X_H d-1]
- K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
- // Heterotrophs
- k_STO: 12., // storage rate constant [g S_S g-1 X_H d-1]
- nu_NO: 0.5, // anoxic reduction factor [-]
- K_O: 0.2, // saturation constant S_0 [g O2 m-3]
- K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
- K_S: 10., // saturation constant S_s [g COD m-3]
- K_STO: 0.1, // saturation constant X_STO [g X_STO g-1 X_H]
- mu_H_max: 3., // maximum specific growth rate [d-1]
- K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
- K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
- b_H_O: 0.3, // aerobic respiration rate [d-1]
- b_H_NO: 0.15, // anoxic respiration rate [d-1]
- b_STO_O: 0.3, // aerobic respitation rate X_STO [d-1]
- b_STO_NO: 0.15, // anoxic respitation rate X_STO [d-1]
- // Autotrophs
- mu_A_max: 1.3, // maximum specific growth rate [d-1]
- K_A_NH: 1.4, // saturation constant S_NH3 [g NH3-N m-3]
- K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
- K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
- b_A_O: 0.20, // aerobic respiration rate [d-1]
- b_A_NO: 0.10 // anoxic respiration rate [d-1]
- };
+ this.kin_params = KINETIC_CONSTANTS;
/**
* Stoichiometric and composition parameters for ASM3. Using Koch et al. 2000 parameters.
* @property {Object} stoi_params - Stoichiometric parameters
*/
- this.stoi_params = {
- // Fractions
- f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
- f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
- // Yields
- Y_STO_O: 0.80, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
- Y_STO_NO: 0.70, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
- Y_H_O: 0.80, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
- Y_H_NO: 0.65, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
- Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
- // Composition (COD via DoR)
- i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
- i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
- // Composition (nitrogen)
- i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
- i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
- i_NXI: 0.04, // nitrogen content X_I [g N g-1 X_I]
- i_NXS: 0.03, // nitrogen content X_S [g N g-1 X_S]
- i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
- // Composition (TSS)
- i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
- i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
- i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
- i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
- // Composition (charge)
- i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
- i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
- };
+ this.stoi_params = STOICHIOMETRIC_CONSTANTS;
/**
* Temperature theta parameters for ASM3. Using Koch et al. 2000 parameters.
@@ -215,4 +219,4 @@ class ASM3 {
}
}
-module.exports = { ASM3, ASM_CONSTANTS };
\ No newline at end of file
+module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };
\ No newline at end of file
diff --git a/src/reaction_modules/asm3_class.js b/src/reaction_modules/asm3_class.js
index db39890..53756bf 100644
--- a/src/reaction_modules/asm3_class.js
+++ b/src/reaction_modules/asm3_class.js
@@ -7,6 +7,62 @@ const ASM_CONSTANTS = {
NUM_SPECIES: 13
};
+const KINETIC_CONSTANTS = {
+ // Hydrolysis
+ k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
+ K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
+ // Heterotrophs
+ k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
+ nu_NO: 0.6, // anoxic reduction factor [-]
+ K_O: 0.2, // saturation constant S_0 [g O2 m-3]
+ K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
+ K_S: 2., // saturation constant S_s [g COD m-3]
+ K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
+ mu_H_max: 2., // maximum specific growth rate [d-1]
+ K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
+ K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
+ b_H_O: 0.2, // aerobic respiration rate [d-1]
+ b_H_NO: 0.1, // anoxic respiration rate [d-1]
+ b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
+ b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
+ // Autotrophs
+ mu_A_max: 1.0, // maximum specific growth rate [d-1]
+ K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
+ K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
+ K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
+ b_A_O: 0.15, // aerobic respiration rate [d-1]
+ b_A_NO: 0.05 // anoxic respiration rate [d-1]
+};
+
+const STOICHIOMETRIC_CONSTANTS = {
+ // Fractions
+ f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
+ f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
+ // Yields
+ Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
+ Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
+ Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
+ Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
+ Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
+ // Composition (COD via DoR)
+ i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
+ i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
+ // Composition (nitrogen)
+ i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
+ i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
+ i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
+ i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
+ i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
+ // Composition (TSS)
+ i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
+ i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
+ i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
+ i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
+ // Composition (charge)
+ i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
+ i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
+};
+
/**
* ASM3 class for the Activated Sludge Model No. 3 (ASM3).
*/
@@ -17,65 +73,13 @@ class ASM3 {
* Kinetic parameters for ASM3 at 20 C.
* @property {Object} kin_params - Kinetic parameters
*/
- this.kin_params = {
- // Hydrolysis
- k_H: 3., // hydrolysis rate constant [g X_S g-1 X_H d-1]
- K_X: 1., // hydrolysis saturation constant [g X_S g-1 X_H]
- // Heterotrophs
- k_STO: 5., // storage rate constant [g S_S g-1 X_H d-1]
- nu_NO: 0.6, // anoxic reduction factor [-]
- K_O: 0.2, // saturation constant S_0 [g O2 m-3]
- K_NO: 0.5, // saturation constant S_NO [g NO3-N m-3]
- K_S: 2., // saturation constant S_s [g COD m-3]
- K_STO: 1., // saturation constant X_STO [g X_STO g-1 X_H]
- mu_H_max: 2., // maximum specific growth rate [d-1]
- K_NH: 0.01, // saturation constant S_NH3 [g NH3-N m-3]
- K_HCO: 0.1, // saturation constant S_HCO [mole HCO3 m-3]
- b_H_O: 0.2, // aerobic respiration rate [d-1]
- b_H_NO: 0.1, // anoxic respiration rate [d-1]
- b_STO_O: 0.2, // aerobic respitation rate X_STO [d-1]
- b_STO_NO: 0.1, // anoxic respitation rate X_STO [d-1]
- // Autotrophs
- mu_A_max: 1.0, // maximum specific growth rate [d-1]
- K_A_NH: 1., // saturation constant S_NH3 [g NH3-N m-3]
- K_A_O: 0.5, // saturation constant S_0 [g O2 m-3]
- K_A_HCO: 0.5, // saturation constant S_HCO [mole HCO3 m-3]
- b_A_O: 0.15, // aerobic respiration rate [d-1]
- b_A_NO: 0.05 // anoxic respiration rate [d-1]
- };
+ this.kin_params = KINETIC_CONSTANTS;
/**
* Stoichiometric and composition parameters for ASM3.
* @property {Object} stoi_params - Stoichiometric parameters
*/
- this.stoi_params = {
- // Fractions
- f_SI: 0., // fraction S_I from hydrolysis [g S_I g-1 X_S]
- f_XI: 0.2, // fraction X_I from decomp X_H [g X_I g-1 X_H]
- // Yields
- Y_STO_O: 0.85, // aerobic yield X_STO per S_S [g X_STO g-1 S_S]
- Y_STO_NO: 0.80, // anoxic yield X_STO per S_S [g X_STO g-1 S_S]
- Y_H_O: 0.63, // aerobic yield X_H per X_STO [g X_H g-1 X_STO]
- Y_H_NO: 0.54, // anoxic yield X_H per X_STO [g X_H g-1 X_STO]
- Y_A: 0.24, // anoxic yield X_A per S_NO [g X_A g-1 NO3-N]
- // Composition (COD via DoR)
- i_CODN: -1.71, // COD content (DoR) [g COD g-1 N2-N]
- i_CODNO: -4.57, // COD content (DoR) [g COD g-1 NO3-N]
- // Composition (nitrogen)
- i_NSI: 0.01, // nitrogen content S_I [g N g-1 S_I]
- i_NSS: 0.03, // nitrogen content S_S [g N g-1 S_S]
- i_NXI: 0.02, // nitrogen content X_I [g N g-1 X_I]
- i_NXS: 0.04, // nitrogen content X_S [g N g-1 X_S]
- i_NBM: 0.07, // nitrogen content X_H / X_A [g N g-1 X_H / X_A]
- // Composition (TSS)
- i_TSXI: 0.75, // TSS content X_I [g TS g-1 X_I]
- i_TSXS: 0.75, // TSS content X_S [g TS g-1 X_S]
- i_TSBM: 0.90, // TSS content X_H / X_A [g TS g-1 X_H / X_A]
- i_TSSTO: 0.60, // TSS content X_STO (PHB based) [g TS g-1 X_STO]
- // Composition (charge)
- i_cNH: 1/14, // charge per S_NH [mole H+ g-1 NH3-N]
- i_cNO: -1/14 // charge per S_NO [mole H+ g-1 NO3-N]
- };
+ this.stoi_params = STOICHIOMETRIC_CONSTANTS;
/**
* Temperature theta parameters for ASM3.
@@ -215,4 +219,4 @@ class ASM3 {
}
}
-module.exports = { ASM3, ASM_CONSTANTS };
\ No newline at end of file
+module.exports = { ASM3, ASM_CONSTANTS, KINETIC_CONSTANTS, STOICHIOMETRIC_CONSTANTS };
\ No newline at end of file
diff --git a/src/specificClass.js b/src/specificClass.js
index 23c1289..5f6e2c7 100644
--- a/src/specificClass.js
+++ b/src/specificClass.js
@@ -10,9 +10,9 @@ const mathConfig = {
const math = create(all, mathConfig);
-const BC_PADDING = 2;
+const BC_PADDING = 2; // Boundary Condition padding for open boundaries in extendedState variable
const DEBUG = false;
-const DAY2MS = 1000 * 60 * 60 * 24;
+const DAY2MS = 1000 * 60 * 60 * 24; // convert between days and milliseconds
class Reactor {
/**
@@ -25,13 +25,14 @@ class Reactor {
this.logger = new logger(this.config.general.logging.enabled, this.config.general.logging.logLevel, config.general.name);
this.emitter = new EventEmitter();
this.measurements = new MeasurementContainer();
- this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
+ this.childRegistrationUtils = new childRegistrationUtils(this); // child registration utility
+ // placeholder variables for children and parents
this.upstreamReactor = null;
this.downstreamReactor = null;
this.returnPump = null;
- this.asm = new ASM3();
+ this.asm = new ASM3(); // Reaction model
this.volume = config.volume; // fluid volume reactor [m3]
@@ -42,9 +43,9 @@ class Reactor {
this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
- this.currentTime = Date.now(); // milliseconds since epoch [ms]
+ this.currentTime = null; // milliseconds since epoch [ms]
this.timeStep = 1 / (24*60*60) * this.config.timeStep; // time step in seconds, converted to days.
- this.speedUpFactor = 100; // speed up factor for simulation, 60 means 1 minute per simulated second
+ this.speedUpFactor = 1; // speed up factor for simulation, 60 means 1 minute per simulated second
}
/**
@@ -113,6 +114,11 @@ class Reactor {
}
}
+ /**
+ * Register child function required for child registration.
+ * @param {object} child
+ * @param {string} softwareType
+ */
registerChild(child, softwareType) {
if(!child) {
this.logger.error(`Invalid ${softwareType} child provided.`);
@@ -161,18 +167,14 @@ class Reactor {
_connectReactor(reactorChild) {
if (reactorChild.config.functionality.positionVsParent != "upstream") {
- this.logger.warn("Reactor children of reactors should always be upstream.");
- }
-
- if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
- this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
+ this.logger.warn("Reactor children of other reactors should always be upstream!");
}
// set upstream and downstream reactor variable in current and child nodes respectively for easy access
this.upstreamReactor = reactorChild;
reactorChild.downstreamReactor = this;
- reactorChild.emitter.on("stateChange", (eventData) => {
+ reactorChild.emitter.on("stateChange", (eventData) => { // Triggers state update in downstream reactor.
this.logger.debug(`State change of upstream reactor detected.`);
this.updateState(eventData);
});
@@ -203,20 +205,32 @@ class Reactor {
* Update the reactor state based on the new time.
* @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
*/
- updateState(newTime) { // expect update with timestamp
- if (this.upstreamReactor) {
- this.setInfluent = this.upstreamReactor.getEffluent[0]; // grab main effluent upstream reactor
+ updateState(newTime) {
+ if (!this.currentTime) { // initialise currentTime variable
+ this.currentTime = newTime;
+ return;
+ }
+
+ if (this.upstreamReactor) { // grab main effluent upstream reactor
+ this.setInfluent = this.upstreamReactor.getEffluent[0];
}
const n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*DAY2MS));
- if (n_iter) {
- let n = 0;
- while (n < n_iter) {
- this.tick(this.timeStep);
- n += 1;
- }
- this.currentTime += n_iter * this.timeStep * DAY2MS / this.speedUpFactor;
- this.emitter.emit("stateChange", this.currentTime);
+
+ if (n_iter == 0) { // no update required, change in currentTime smaller than time step
+ return;
+ }
+
+ let n = 0;
+ while (n < n_iter) {
+ this.tick(this.timeStep);
+ n += 1;
+ }
+ this.currentTime += n_iter * this.timeStep * DAY2MS / this.speedUpFactor;
+ this.emitter.emit("stateChange", this.currentTime); // update downstream reactors
+
+ if (this.returnPump) { // update recirculation pump state
+ this.returnPump.updateSourceSink();
}
}
}
@@ -231,6 +245,23 @@ class Reactor_CSTR extends Reactor {
this.state = config.initialState;
}
+ _updateMeasurement(measurementType, value, position, context) {
+
+ switch(measurementType) {
+ case "quantity (oxygen)":
+ this.state[ASM_CONSTANTS.S_O_INDEX] = value;
+ break;
+ case "quantity (ammonium)":
+ this.state[ASM_CONSTANTS.S_NH_INDEX] = value;
+ break;
+ case "quantity (nox)":
+ this.state[ASM_CONSTANTS.S_NO_INDEX] = value;
+ break;
+ default:
+ super._updateMeasurement(measurementType, value, position, context);
+ }
+ }
+
/**
* Tick the reactor state using the forward Euler method.
* @param {number} time_step - Time step for the simulation [d].
@@ -241,7 +272,7 @@ class Reactor_CSTR extends Reactor {
const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
const reaction = this.asm.compute_dC(this.state, this.temperature);
const transfer = Array(ASM_CONSTANTS.NUM_SPECIES).fill(0.0);
- transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
+ transfer[ASM_CONSTANTS.S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[ASM_CONSTANTS.S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
@@ -290,13 +321,23 @@ class Reactor_PFR extends Reactor {
this.D = this._constrainDispersion(input.payload);
}
+ _connectReactor(reactorChild) {
+ if (math.abs(reactorChild.d_x - this.d_x) / this.d_x < 0.025) {
+ this.logger.warn("Significant grid sizing discrepancies between adjacent reactors! Change resolutions to match reactors grid step, or implement boundary value interpolation.");
+ }
+ super._connectReactor(reactorChild);
+ }
+
+ /**
+ * Update the reactor state based on the new time. Performs checks specific to PFR.
+ * @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
+ */
updateState(newTime) {
super.updateState(newTime);
- // let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
- this.D = this._constrainDispersion(this.D);
+
+ this.D = this._constrainDispersion(this.D); // constrains D to minimum dispersion, so that local Péclet number is always above 2
const Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
- // (Pe_local >= 2) && this.logger.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
(Co_D >= 0.5) && this.logger.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
if(DEBUG) {
@@ -375,8 +416,8 @@ class Reactor_PFR extends Reactor {
*/
_applyBoundaryConditions() {
// Upstream BC
- if (this.upstreamReactor) {
- // Open boundary
+ if (this.upstreamReactor && this.upstreamReactor.config.reactor_type == "PFR") {
+ // Open boundary, if upstream reactor is PFR
this.extendedState.splice(0, BC_PADDING, ...this.upstreamReactor.state.slice(-BC_PADDING));
} else {
if (math.sum(this.Fs) > 0) {
@@ -384,7 +425,7 @@ class Reactor_PFR extends Reactor {
const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
const BC_dispersion_term = this.D*this.A/(math.sum(this.Fs)*this.d_x);
this.extendedState[BC_PADDING] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, this.extendedState[BC_PADDING+1])));
- // Numerical boundary condition
+ // Numerical boundary condition (first-order accurate)
this.extendedState[BC_PADDING-1] = math.add(math.multiply(2, this.extendedState[BC_PADDING]), math.multiply(-2, this.extendedState[BC_PADDING+2]), this.extendedState[BC_PADDING+3]);
} else {
// Neumann BC (no flux)
@@ -393,8 +434,8 @@ class Reactor_PFR extends Reactor {
}
// Downstream BC
- if (this.downstreamReactor) {
- // Open boundary
+ if (this.downstreamReactor && this.downstreamReactor.config.reactor_type == "PFR") {
+ // Open boundary, if downstream reactor is PFR
this.extendedState.splice(this.n_x+BC_PADDING, BC_PADDING, ...this.downstreamReactor.state.slice(0, BC_PADDING));
} else {
// Neumann BC (no flux)
@@ -404,7 +445,6 @@ class Reactor_PFR extends Reactor {
/**
* Create finite difference first derivative operator.
- * @returns {Array} - First derivative operator matrix.
*/
_makeDoperator() { // create gradient operator
const D_size = this.n_x+2*BC_PADDING;
@@ -420,7 +460,6 @@ class Reactor_PFR extends Reactor {
/**
* Create central finite difference second derivative operator.
- * @returns {Array} - Second derivative operator matrix.
*/
_makeD2operator() { // create the central second derivative operator
const D_size = this.n_x+2*BC_PADDING;
@@ -433,6 +472,9 @@ class Reactor_PFR extends Reactor {
return D2;
}
+ /**
+ * Constrains dispersion so that local Péclet number stays below 2. Needed for stable central differencing method.
+ */
_constrainDispersion(D) {
const Dmin = math.sum(this.Fs) * this.d_x / (1.999 * this.A);
if (D < Dmin) {