From 24de5a4c9f2129e1443a5f90ad4ca438c98ae79e Mon Sep 17 00:00:00 2001
From: "p.vanderwilt"
Date: Fri, 11 Jul 2025 12:22:36 +0200
Subject: [PATCH] Add generalFunctions dependency and implement basic
measurement child registration in nodeClass
---
package-lock.json | 6 +
package.json | 1 +
src/nodeClass.js | 6 +
src/specificClass.js | 545 ++++++++++++++++++++++---------------------
4 files changed, 294 insertions(+), 264 deletions(-)
diff --git a/package-lock.json b/package-lock.json
index e2e89fc..19b3188 100644
--- a/package-lock.json
+++ b/package-lock.json
@@ -9,6 +9,7 @@
"version": "0.0.1",
"license": "SEE LICENSE",
"dependencies": {
+ "generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git",
"mathjs": "^14.5.2"
}
},
@@ -59,6 +60,11 @@
"url": "https://github.com/sponsors/rawify"
}
},
+ "node_modules/generalFunctions": {
+ "version": "1.0.0",
+ "resolved": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git#950ca2b6b4e91b37479aee90bff74b02c16f130e",
+ "license": "SEE LICENSE"
+ },
"node_modules/javascript-natural-sort": {
"version": "0.7.1",
"resolved": "https://registry.npmjs.org/javascript-natural-sort/-/javascript-natural-sort-0.7.1.tgz",
diff --git a/package.json b/package.json
index e60fa97..b6d04c5 100644
--- a/package.json
+++ b/package.json
@@ -27,6 +27,7 @@
}
},
"dependencies": {
+ "generalFunctions": "git+https://gitea.centraal.wbd-rd.nl/p.vanderwilt/generalFunctions.git",
"mathjs": "^14.5.2"
}
}
diff --git a/src/nodeClass.js b/src/nodeClass.js
index 2e00ced..f4bbe25 100644
--- a/src/nodeClass.js
+++ b/src/nodeClass.js
@@ -48,6 +48,12 @@ class nodeClass {
case "Dispersion":
this.reactor.setDispersion = msg;
break;
+ case 'registerChild':
+ // Register this node as a child of the parent node
+ const childId = msg.payload;
+ const childObj = this.RED.nodes.getNode(childId);
+ this.reactor.childRegistrationUtils.registerChild(childObj.source, msg.positionVsParent);
+ break;
default:
console.log("Unknown topic: " + msg.topic);
}
diff --git a/src/specificClass.js b/src/specificClass.js
index 62236d1..509f460 100644
--- a/src/specificClass.js
+++ b/src/specificClass.js
@@ -1,9 +1,10 @@
const ASM3 = require('./reaction_modules/asm3_class.js');
const { create, all } = require('mathjs');
const { assertNoNaN } = require('./utils.js');
+const { childRegistrationUtils, logger, MeasurementContainer } = require('generalFunctions');
const config = {
- matrix: 'Array' // use Array as the matrix type
+ matrix: 'Array' // use Array as the matrix type
};
const math = create(all, config);
@@ -13,304 +14,320 @@ const NUM_SPECIES = 13;
const DEBUG = false;
class Reactor {
- /**
- * Reactor base class.
- * @param {object} config - Configuration object containing reactor parameters.
- */
- constructor(config) {
- this.asm = new ASM3();
+ /**
+ * Reactor base class.
+ * @param {object} config - Configuration object containing reactor parameters.
+ */
+ constructor(config) {
+ // EVOLV stuff
+ this.logger = new logger(); //TODO: attach config
+ this.measurements = new MeasurementContainer();
+ this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
- this.volume = config.volume; // fluid volume reactor [m3]
+ this.asm = new ASM3();
- this.Fs = Array(config.n_inlets).fill(0); // fluid debits per inlet [m3 d-1]
- this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(NUM_SPECIES).fill(0)); // composition influents
- this.OTR = 0.0; // oxygen transfer rate [g O2 d-1]
- this.temperature = 20; // temperature [C]
+ this.volume = config.volume; // fluid volume reactor [m3]
- this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
+ this.Fs = Array(config.n_inlets).fill(0); // fluid debits per inlet [m3 d-1]
+ this.Cs_in = Array.from(Array(config.n_inlets), () => new Array(NUM_SPECIES).fill(0)); // composition influents
+ this.OTR = 0.0; // oxygen transfer rate [g O2 d-1]
+ this.temperature = 20; // temperature [C]
- this.currentTime = Date.now(); // milliseconds since epoch [ms]
- this.timeStep = 1 / (24*60*15); // time step [d]
- this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second
+ this.kla = config.kla; // if NaN, use externaly provided OTR [d-1]
+
+ this.currentTime = Date.now(); // milliseconds since epoch [ms]
+ this.timeStep = 1 / (24*60*15); // time step [d]
+ this.speedUpFactor = 60; // speed up factor for simulation, 60 means 1 minute per simulated second
+ }
+
+ updateMeasurement(variant, subType, value, position) {
+ this.logger.debug(`---------------------- updating ${subType} ------------------ `);
+ switch (subType) {
+ case "temperature":
+ this.logger.debug(`no nothing`);
+ break;
+ default:
+ this.logger.error(`Type '${subType}' not recognized for measured update.`);
+ return;
}
+ }
- /**
- * Setter for influent data.
- * @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
- */
- set setInfluent(input) {
- let index_in = input.payload.inlet;
- this.Fs[index_in] = input.payload.F;
- this.Cs_in[index_in] = input.payload.C;
+ /**
+ * Setter for influent data.
+ * @param {object} input - Input object (msg) containing payload with inlet index, flow rate, and concentrations.
+ */
+ set setInfluent(input) {
+ let index_in = input.payload.inlet;
+ this.Fs[index_in] = input.payload.F;
+ this.Cs_in[index_in] = input.payload.C;
+ }
+
+ /**
+ * Setter for OTR (Oxygen Transfer Rate).
+ * @param {object} input - Input object (msg) containing payload with OTR value [g O2 d-1].
+ */
+ set setOTR(input) {
+ this.OTR = input.payload;
+ }
+
+ /**
+ * Setter for temperature.
+ * @param {object} input - Input object (msg) containing payload with temperature value [C].
+ */
+ set setTemperature(input) {
+ this.temperature = input.payload;
+ }
+
+ /**
+ * Calculate the oxygen transfer rate (OTR) based on the dissolved oxygen concentration and temperature.
+ * @param {number} S_O - Dissolved oxygen concentration [g O2 m-3].
+ * @param {number} T - Temperature in Celsius, default to 20 C.
+ * @returns {number} - Calculated OTR [g O2 d-1].
+ */
+ _calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
+ let S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
+ return this.kla * (S_O_sat - S_O);
+ }
+
+ /**
+ * Clip values in an array to zero.
+ * @param {Array} arr - Array of values to clip.
+ * @returns {Array} - New array with values clipped to zero.
+ */
+ _arrayClip2Zero(arr) {
+ if (Array.isArray(arr)) {
+ return arr.map(x => this._arrayClip2Zero(x));
+ } else {
+ return arr < 0 ? 0 : arr;
}
+ }
- /**
- * Setter for OTR (Oxygen Transfer Rate).
- * @param {object} input - Input object (msg) containing payload with OTR value [g O2 d-1].
- */
- set setOTR(input) {
- this.OTR = input.payload;
+ /**
+ * Update the reactor state based on the new time.
+ * @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
+ */
+ updateState(newTime) { // expect update with timestamp
+ const day2ms = 1000 * 60 * 60 * 24;
+
+ let n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*day2ms));
+ if (n_iter) {
+ let n = 0;
+ while (n < n_iter) {
+ this.tick(this.timeStep);
+ n += 1;
}
-
- /**
- * Setter for temperature.
- * @param {object} input - Input object (msg) containing payload with temperature value [C].
- */
- set setTemperature(input) {
- this.temperature = input.payload;
+ this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
}
-
- /**
- * Calculate the oxygen transfer rate (OTR) based on the dissolved oxygen concentration and temperature.
- * @param {number} S_O - Dissolved oxygen concentration [g O2 m-3].
- * @param {number} T - Temperature in Celsius, default to 20 C.
- * @returns {number} - Calculated OTR [g O2 d-1].
- */
- _calcOTR(S_O, T = 20.0) { // caculate the OTR using basic correlation, default to temperature: 20 C
- let S_O_sat = 14.652 - 4.1022e-1 * T + 7.9910e-3 * T*T + 7.7774e-5 * T*T*T;
- return this.kla * (S_O_sat - S_O);
- }
-
- /**
- * Clip values in an array to zero.
- * @param {Array} arr - Array of values to clip.
- * @returns {Array} - New array with values clipped to zero.
- */
- _arrayClip2Zero(arr) {
- if (Array.isArray(arr)) {
- return arr.map(x => this._arrayClip2Zero(x));
- } else {
- return arr < 0 ? 0 : arr;
- }
- }
-
- /**
- * Update the reactor state based on the new time.
- * @param {number} newTime - New time to update reactor state to, in milliseconds since epoch.
- */
- updateState(newTime) { // expect update with timestamp
- const day2ms = 1000 * 60 * 60 * 24;
-
- let n_iter = Math.floor(this.speedUpFactor * (newTime-this.currentTime) / (this.timeStep*day2ms));
- if (n_iter) {
- let n = 0;
- while (n < n_iter) {
- this.tick(this.timeStep);
- n += 1;
- }
- this.currentTime += n_iter * this.timeStep * day2ms / this.speedUpFactor;
- }
- }
-
+ }
}
class Reactor_CSTR extends Reactor {
- /**
- * Reactor_CSTR class for Continuous Stirred Tank Reactor.
- * @param {object} config - Configuration object containing reactor parameters.
- */
- constructor(config) {
- super(config);
- this.state = config.initialState;
- }
+ /**
+ * Reactor_CSTR class for Continuous Stirred Tank Reactor.
+ * @param {object} config - Configuration object containing reactor parameters.
+ */
+ constructor(config) {
+ super(config);
+ this.state = config.initialState;
+ }
- /**
- * Getter for effluent data.
- * @returns {object} Effluent data object (msg), defaults to inlet 0.
- */
- get getEffluent() { // getter for Effluent, defaults to inlet 0
- return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state }, timestamp: this.currentTime };
- }
+ /**
+ * Getter for effluent data.
+ * @returns {object} Effluent data object (msg), defaults to inlet 0.
+ */
+ get getEffluent() { // getter for Effluent, defaults to inlet 0
+ return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state }, timestamp: this.currentTime };
+ }
- /**
- * Tick the reactor state using the forward Euler method.
- * @param {number} time_step - Time step for the simulation [d].
- * @returns {Array} - New reactor state.
- */
- tick(time_step) { // tick reactor state using forward Euler method
- const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0];
- const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
- const reaction = this.asm.compute_dC(this.state, this.temperature);
- const transfer = Array(NUM_SPECIES).fill(0.0);
- transfer[S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
+ /**
+ * Tick the reactor state using the forward Euler method.
+ * @param {number} time_step - Time step for the simulation [d].
+ * @returns {Array} - New reactor state.
+ */
+ tick(time_step) { // tick reactor state using forward Euler method
+ const inflow = math.multiply(math.divide([this.Fs], this.volume), this.Cs_in)[0];
+ const outflow = math.multiply(-1 * math.sum(this.Fs) / this.volume, this.state);
+ const reaction = this.asm.compute_dC(this.state, this.temperature);
+ const transfer = Array(NUM_SPECIES).fill(0.0);
+ transfer[S_O_INDEX] = isNaN(this.kla) ? this.OTR : this._calcOTR(this.state[S_O_INDEX], this.temperature); // calculate OTR if kla is not NaN, otherwise use externaly calculated OTR
- const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
- this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
- if(DEBUG){
- assertNoNaN(dC_total, "change in state");
- assertNoNaN(this.state, "new state");
- }
- return this.state;
- }
+ const dC_total = math.multiply(math.add(inflow, outflow, reaction, transfer), time_step)
+ this.state = this._arrayClip2Zero(math.add(this.state, dC_total)); // clip value element-wise to avoid negative concentrations
+ if(DEBUG){
+ assertNoNaN(dC_total, "change in state");
+ assertNoNaN(this.state, "new state");
+ }
+ return this.state;
+ }
}
class Reactor_PFR extends Reactor {
- /**
- * Reactor_PFR class for Plug Flow Reactor.
- * @param {object} config - Configuration object containing reactor parameters.
- */
- constructor(config) {
- super(config);
+ /**
+ * Reactor_PFR class for Plug Flow Reactor.
+ * @param {object} config - Configuration object containing reactor parameters.
+ */
+ constructor(config) {
+ super(config);
- this.length = config.length; // reactor length [m]
- this.n_x = config.resolution_L; // number of slices
+ this.length = config.length; // reactor length [m]
+ this.n_x = config.resolution_L; // number of slices
- this.d_x = this.length / this.n_x;
- this.A = this.volume / this.length; // crosssectional area [m2]
+ this.d_x = this.length / this.n_x;
+ this.A = this.volume / this.length; // crosssectional area [m2]
- this.alpha = config.alpha;
+ this.alpha = config.alpha;
- this.state = Array.from(Array(this.n_x), () => config.initialState.slice())
+ this.state = Array.from(Array(this.n_x), () => config.initialState.slice())
- // console.log("Initial State: ")
- // console.log(this.state)
+ // console.log("Initial State: ")
+ // console.log(this.state)
- this.D = 0.0; // axial dispersion [m2 d-1]
+ this.D = 0.0; // axial dispersion [m2 d-1]
- this.D_op = this._makeDoperator(true, true);
- assertNoNaN(this.D_op, "Derivative operator");
+ this.D_op = this._makeDoperator(true, true);
+ assertNoNaN(this.D_op, "Derivative operator");
- this.D2_op = this._makeD2operator();
- assertNoNaN(this.D2_op, "Second derivative operator");
+ this.D2_op = this._makeD2operator();
+ assertNoNaN(this.D2_op, "Second derivative operator");
+ }
+
+ /**
+ * Setter for axial dispersion.
+ * @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1].
+ */
+ set setDispersion(input) {
+ this.D = input.payload;
+ }
+
+ /**
+ * Getter for effluent data.
+ * @returns {object} Effluent data object (msg), defaults to inlet 0.
+ */
+ get getEffluent() {
+ return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state.at(-1) }, timestamp: this.currentTime };
+ }
+
+ updateState(newTime) {
+ super.updateState(newTime);
+ let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
+ let Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
+
+ (Pe_local >= 2) && console.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
+ (Co_D >= 0.5) && console.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
+
+ if(DEBUG) {
+ console.log("Inlet state max " + math.max(this.state[0]))
+ console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A));
+ console.log("Pe local " + Pe_local);
+ console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x));
+ console.log("Co D " + Co_D);
+ }
+ }
+
+ /**
+ * Tick the reactor state using explicit finite difference method.
+ * @param {number} time_step - Time step for the simulation [d].
+ * @returns {Array} - New reactor state.
+ */
+ tick(time_step) {
+ const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
+ const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.state);
+ const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
+ const transfer = Array.from(Array(this.n_x), () => new Array(NUM_SPECIES).fill(0));
+
+ if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
+ transfer.forEach((x) => { x[S_O_INDEX] = this.OTR; });
+ } else {
+ transfer.forEach((x, i) => { x[S_O_INDEX] = this._calcOTR(this.state[i][S_O_INDEX], this.temperature); });
}
- /**
- * Setter for axial dispersion.
- * @param {object} input - Input object (msg) containing payload with dispersion value [m2 d-1].
- */
- set setDispersion(input) {
- this.D = input.payload;
+ const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step);
+
+ const stateNew = math.add(this.state, dC_total);
+ this._applyBoundaryConditions(stateNew);
+
+ if (DEBUG) {
+ assertNoNaN(dispersion, "dispersion");
+ assertNoNaN(advection, "advection");
+ assertNoNaN(reaction, "reaction");
+ assertNoNaN(dC_total, "change in state");
+ assertNoNaN(stateNew, "new state post BC");
}
- /**
- * Getter for effluent data.
- * @returns {object} Effluent data object (msg), defaults to inlet 0.
- */
- get getEffluent() {
- return { topic: "Fluent", payload: { inlet: 0, F: math.sum(this.Fs), C: this.state.at(-1) }, timestamp: this.currentTime };
+ this.state = this._arrayClip2Zero(stateNew);
+ return stateNew;
+ }
+
+ /**
+ * Apply boundary conditions to the reactor state.
+ * for inlet, apply generalised Danckwerts BC, if there is not flow, apply Neumann BC with no flux
+ * for outlet, apply regular Danckwerts BC (Neumann BC with no flux)
+ * @param {Array} state - Current reactor state without enforced BCs.
+ */
+ _applyBoundaryConditions(state) {
+ if (math.sum(this.Fs) > 0) { // Danckwerts BC
+ const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
+ const BC_dispersion_term = (1-this.alpha)*this.D*this.A/(math.sum(this.Fs)*this.d_x);
+ state[0] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, state[1])));
+ } else {
+ state[0] = state[1];
}
+ // Neumann BC (no flux)
+ state[this.n_x-1] = state[this.n_x-2];
+ }
- updateState(newTime) {
- super.updateState(newTime);
- let Pe_local = this.d_x*math.sum(this.Fs)/(this.D*this.A)
- let Co_D = this.D*this.timeStep/(this.d_x*this.d_x);
-
- (Pe_local >= 2) && console.warn(`Local Péclet number (${Pe_local}) is too high! Increase reactor resolution.`);
- (Co_D >= 0.5) && console.warn(`Courant number (${Co_D}) is too high! Reduce time step size.`);
-
- if(DEBUG) {
- console.log("Inlet state max " + math.max(this.state[0]))
- console.log("Pe total " + this.length*math.sum(this.Fs)/(this.D*this.A));
- console.log("Pe local " + Pe_local);
- console.log("Co ad " + math.sum(this.Fs)*this.timeStep/(this.A*this.d_x));
- console.log("Co D " + Co_D);
- }
+ /**
+ * Create finite difference first derivative operator.
+ * @param {boolean} central - Use central difference scheme if true, otherwise use upwind scheme.
+ * @param {boolean} higher_order - Use higher order scheme if true, otherwise use first order scheme.
+ * @returns {Array} - First derivative operator matrix.
+ */
+ _makeDoperator(central = false, higher_order = false) { // create gradient operator
+ if (higher_order) {
+ if (central) {
+ const I = math.resize(math.diag(Array(this.n_x).fill(1/12), -2), [this.n_x, this.n_x]);
+ const A = math.resize(math.diag(Array(this.n_x).fill(-2/3), -1), [this.n_x, this.n_x]);
+ const B = math.resize(math.diag(Array(this.n_x).fill(2/3), 1), [this.n_x, this.n_x]);
+ const C = math.resize(math.diag(Array(this.n_x).fill(-1/12), 2), [this.n_x, this.n_x]);
+ const D = math.add(I, A, B, C);
+ const NearBoundary = Array(this.n_x).fill(0.0);
+ NearBoundary[0] = -1/4;
+ NearBoundary[1] = -5/6;
+ NearBoundary[2] = 3/2;
+ NearBoundary[3] = -1/2;
+ NearBoundary[4] = 1/12;
+ D[1] = NearBoundary;
+ NearBoundary.reverse();
+ D[this.n_x-2] = math.multiply(-1, NearBoundary);
+ D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
+ D[this.n_x-1] = Array(this.n_x).fill(0);
+ return D;
+ } else {
+ throw new Error("Upwind higher order method not implemented! Use central scheme instead.");
+ }
+ } else {
+ const I = math.resize(math.diag(Array(this.n_x).fill(1 / (1+central)), central), [this.n_x, this.n_x]);
+ const A = math.resize(math.diag(Array(this.n_x).fill(-1 / (1+central)), -1), [this.n_x, this.n_x]);
+ const D = math.add(I, A);
+ D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
+ D[this.n_x-1] = Array(this.n_x).fill(0);
+ return D;
}
+ }
- /**
- * Tick the reactor state using explicit finite difference method.
- * @param {number} time_step - Time step for the simulation [d].
- * @returns {Array} - New reactor state.
- */
- tick(time_step) {
- const dispersion = math.multiply(this.D / (this.d_x*this.d_x), this.D2_op, this.state);
- const advection = math.multiply(-1 * math.sum(this.Fs) / (this.A*this.d_x), this.D_op, this.state);
- const reaction = this.state.map((state_slice) => this.asm.compute_dC(state_slice, this.temperature));
- const transfer = Array.from(Array(this.n_x), () => new Array(NUM_SPECIES).fill(0));
-
- if (isNaN(this.kla)) { // calculate OTR if kla is not NaN, otherwise use externally calculated OTR
- transfer.forEach((x) => { x[S_O_INDEX] = this.OTR; });
- } else {
- transfer.forEach((x, i) => { x[S_O_INDEX] = this._calcOTR(this.state[i][S_O_INDEX], this.temperature); });
- }
-
- const dC_total = math.multiply(math.add(dispersion, advection, reaction, transfer), time_step);
-
- const stateNew = math.add(this.state, dC_total);
- this._applyBoundaryConditions(stateNew);
-
- if (DEBUG) {
- assertNoNaN(dispersion, "dispersion");
- assertNoNaN(advection, "advection");
- assertNoNaN(reaction, "reaction");
- assertNoNaN(dC_total, "change in state");
- assertNoNaN(stateNew, "new state post BC");
- }
-
- this.state = this._arrayClip2Zero(stateNew);
- return stateNew;
- }
-
- /**
- * Apply boundary conditions to the reactor state.
- * for inlet, apply generalised Danckwerts BC, if there is not flow, apply Neumann BC with no flux
- * for outlet, apply regular Danckwerts BC (Neumann BC with no flux)
- * @param {Array} state - Current reactor state without enforced BCs.
- */
- _applyBoundaryConditions(state) {
- if (math.sum(this.Fs) > 0) { // Danckwerts BC
- const BC_C_in = math.multiply(1 / math.sum(this.Fs), [this.Fs], this.Cs_in)[0];
- const BC_dispersion_term = (1-this.alpha)*this.D*this.A/(math.sum(this.Fs)*this.d_x);
- state[0] = math.multiply(1/(1+BC_dispersion_term), math.add(BC_C_in, math.multiply(BC_dispersion_term, state[1])));
- } else {
- state[0] = state[1];
- }
- // Neumann BC (no flux)
- state[this.n_x-1] = state[this.n_x-2]
- }
-
- /**
- * Create finite difference first derivative operator.
- * @param {boolean} central - Use central difference scheme if true, otherwise use upwind scheme.
- * @param {boolean} higher_order - Use higher order scheme if true, otherwise use first order scheme.
- * @returns {Array} - First derivative operator matrix.
- */
- _makeDoperator(central = false, higher_order = false) { // create gradient operator
- if (higher_order) {
- if (central) {
- const I = math.resize(math.diag(Array(this.n_x).fill(1/12), -2), [this.n_x, this.n_x]);
- const A = math.resize(math.diag(Array(this.n_x).fill(-2/3), -1), [this.n_x, this.n_x]);
- const B = math.resize(math.diag(Array(this.n_x).fill(2/3), 1), [this.n_x, this.n_x]);
- const C = math.resize(math.diag(Array(this.n_x).fill(-1/12), 2), [this.n_x, this.n_x]);
- const D = math.add(I, A, B, C);
- const NearBoundary = Array(this.n_x).fill(0.0);
- NearBoundary[0] = -1/4;
- NearBoundary[1] = -5/6;
- NearBoundary[2] = 3/2;
- NearBoundary[3] = -1/2;
- NearBoundary[4] = 1/12;
- D[1] = NearBoundary;
- NearBoundary.reverse();
- D[this.n_x-2] = math.multiply(-1, NearBoundary);
- D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
- D[this.n_x-1] = Array(this.n_x).fill(0);
- return D;
- } else {
- throw new Error("Upwind higher order method not implemented! Use central scheme instead.");
- }
- } else {
- const I = math.resize(math.diag(Array(this.n_x).fill(1 / (1+central)), central), [this.n_x, this.n_x]);
- const A = math.resize(math.diag(Array(this.n_x).fill(-1 / (1+central)), -1), [this.n_x, this.n_x]);
- const D = math.add(I, A);
- D[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
- D[this.n_x-1] = Array(this.n_x).fill(0);
- return D;
- }
- }
-
- /**
- * Create central finite difference second derivative operator.
- * @returns {Array} - Second derivative operator matrix.
- */
- _makeD2operator() { // create the central second derivative operator
- const I = math.diag(Array(this.n_x).fill(-2), 0);
- const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]);
- const B = math.resize(math.diag(Array(this.n_x).fill(1), -1), [this.n_x, this.n_x]);
- const D2 = math.add(I, A, B);
- D2[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
- D2[this.n_x - 1] = Array(this.n_x).fill(0);
- return D2;
- }
+ /**
+ * Create central finite difference second derivative operator.
+ * @returns {Array} - Second derivative operator matrix.
+ */
+ _makeD2operator() { // create the central second derivative operator
+ const I = math.diag(Array(this.n_x).fill(-2), 0);
+ const A = math.resize(math.diag(Array(this.n_x).fill(1), 1), [this.n_x, this.n_x]);
+ const B = math.resize(math.diag(Array(this.n_x).fill(1), -1), [this.n_x, this.n_x]);
+ const D2 = math.add(I, A, B);
+ D2[0] = Array(this.n_x).fill(0); // set by BCs elsewhere
+ D2[this.n_x - 1] = Array(this.n_x).fill(0);
+ return D2;
+ }
}
module.exports = { Reactor_CSTR, Reactor_PFR };