Compare commits

...

4 Commits

Author SHA1 Message Date
znetsixe
6e9ae9fc7e Need to stich everything together then V1.0 is done. 2025-10-23 18:04:18 +02:00
znetsixe
371f3c65e7 updated retrieval mechanism 2025-10-23 09:51:54 +02:00
znetsixe
b8b7871e38 update before closing 2025-10-21 13:44:31 +02:00
znetsixe
f29aa4f5af latest version 2025-10-21 12:45:19 +02:00
3 changed files with 531 additions and 147 deletions

View File

@@ -58,7 +58,7 @@
icon: "font-awesome/fa-tint",
label: function () {
return this.positionIcon + " " + this.assetType || "pumpingStation";
return this.positionIcon + " PumpingStation";
},
oneditprepare: function() {

View File

@@ -88,10 +88,7 @@ class nodeClass {
}
/**
* Register this node as a child upstream and downstream.
* Delayed to avoid Node-RED startup race conditions.
*/
// init registration msg
_registerChild() {
setTimeout(() => {
this.node.send([
@@ -102,12 +99,78 @@ class nodeClass {
}, 100);
}
/**
* Start the periodic tick loop to drive the Measurement class.
*/
_updateNodeStatus() {
const ps = this.source;
try {
// --- Basin & measurements -------------------------------------------------
const maxVolBeforeOverflow = ps.basin?.maxVolOverflow ?? ps.basin?.maxVol ?? 0;
const volumeMeasurement = ps.measurements.type("volume").variant("measured").position("atEquipment");
const currentVolume = volumeMeasurement.getCurrentValue("m3") ?? 0;
const netFlowMeasurement = ps.measurements.type("netFlowRate").variant("predicted").position("atEquipment");
const netFlowM3s = netFlowMeasurement?.getCurrentValue("m3/s") ?? 0;
const netFlowM3h = netFlowM3s * 3600;
const percentFull = ps.measurements.type("volume").variant("procent").position("atEquipment").getCurrentValue() ?? 0;
// --- State information ----------------------------------------------------
const direction = ps.state?.direction || "unknown";
const secondsRemaining = ps.state?.seconds ?? null;
const timeRemaining = secondsRemaining ? `${Math.round(secondsRemaining / 60)}` : 0 + " min";
// --- Icon / colour selection ---------------------------------------------
let symbol = "❔";
let fill = "grey";
switch (direction) {
case "filling":
symbol = "⬆️";
fill = "blue";
break;
case "draining":
symbol = "⬇️";
fill = "orange";
break;
case "stable":
symbol = "⏸️";
fill = "green";
break;
default:
symbol = "❔";
fill = "grey";
break;
}
// --- Status text ----------------------------------------------------------
const textParts = [
`${symbol} ${percentFull.toFixed(1)}%`,
`V=${currentVolume.toFixed(2)} / ${maxVolBeforeOverflow.toFixed(2)}`,
`net=${netFlowM3h.toFixed(1)} m³/h`,
`t≈${timeRemaining}`
];
return {
fill,
shape: "dot",
text: textParts.join(" | ")
};
} catch (error) {
this.node.error("Error in updateNodeStatus: " + error.message);
return { fill: "red", shape: "ring", text: "Status Error" };
}
}
// any time based functions here
_startTickLoop() {
setTimeout(() => {
this._tickInterval = setInterval(() => this._tick(), 1000);
// Update node status on nodered screen every second ( this is not the best way to do this, but it works for now)
this._statusInterval = setInterval(() => {
const status = this._updateNodeStatus();
this.node.status(status);
}, 1000);
}, 1000);
}
@@ -115,8 +178,9 @@ class nodeClass {
* Execute a single tick: update measurement, format and send outputs.
*/
_tick() {
//this.source.tick();
//pumping station needs time based ticks to recalc level when predicted
this.source.tick();
const raw = this.source.getOutput();
const processMsg = this._output.formatMsg(raw, this.config, 'process');
const influxMsg = this._output.formatMsg(raw, this.config, 'influxdb');
@@ -156,7 +220,7 @@ class nodeClass {
_attachCloseHandler() {
this.node.on('close', (done) => {
clearInterval(this._tickInterval);
//clearInterval(this._statusInterval);
clearInterval(this._statusInterval);
done();
});
}

View File

@@ -1,5 +1,5 @@
const EventEmitter = require('events');
const {logger,configUtils,configManager,childRegistrationUtils,MeasurementContainer,coolprop} = require('generalFunctions');
const {logger,configUtils,configManager,childRegistrationUtils,MeasurementContainer,coolprop,interpolation} = require('generalFunctions');
class pumpingStation {
constructor(config={}) {
@@ -9,6 +9,7 @@ class pumpingStation {
this.defaultConfig = this.configManager.getConfig('pumpingStation');
this.configUtils = new configUtils(this.defaultConfig);
this.config = this.configUtils.initConfig(config);
this.interpolate = new interpolation();
// Init after config is set
this.logger = new logger(this.config.general.logging.enabled,this.config.general.logging.logLevel, this.config.general.name);
@@ -24,8 +25,10 @@ class pumpingStation {
// Initialize basin-specific properties and calculate used parameters
this.initBasinProperties();
this.parent = {}; // object to hold parent information for when we follow flow directions.
this.child = {}; // object to hold child information so we know on what to subscribe
this.machines = {}; // object to hold child machine information
this.stations = {}; // object to hold station information
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
this.logger.debug('pumpstation Initialized with all helpers');
@@ -35,6 +38,7 @@ class pumpingStation {
registerChild(child, softwareType) {
this.logger.debug('Setting up child event for softwaretype ' + softwareType);
//define what to do with measurements
if(softwareType === "measurement"){
const position = child.config.functionality.positionVsParent;
const distance = child.config.functionality.distanceVsParent || 0;
@@ -50,18 +54,170 @@ class pumpingStation {
this.logger.debug(` Emitting... ${eventName} with data:`);
// Store directly in parent's measurement container
this.measurements
.type(measurementType)
.variant("measured")
.position(position)
.value(eventData.value, eventData.timestamp, eventData.unit);
this.measurements.type(measurementType).variant("measured").position(position).value(eventData.value, eventData.timestamp, eventData.unit);
// Call the appropriate handler
this._callMeasurementHandler(measurementType, eventData.value, position, eventData);
});
}
//define what to do when machines are connected
if(softwareType == "machine"){
// Check if the machine is already registered
this.machines[child.config.general.id] === undefined ? this.machines[child.config.general.id] = child : this.logger.warn(`Machine ${child.config.general.id} is already registered.`);
//listen for machine pressure changes
this.logger.debug(`Listening for flow changes from machine ${child.config.general.id}`);
switch(child.config.functionality.positionVsParent){
case("downstream"):
case("atequipment"): //in case of atequipment we also assume downstream seeing as it is registered at this pumpingstation as part of it.
//for now lets focus on handling downstream predicted flow
child.measurements.emitter.on("flow.predicted.downstream", (eventData) => {
this.logger.debug(`Flow prediction update from ${child.config.general.id}: ${eventData.value} ${eventData.unit}`);
this.measurements.type('flow').variant('predicted').position('out').value(eventData.value,eventData.timestamp,eventData.unit);
});
break;
case("upstream"):
//check for predicted outgoing flow at the connected child pumpingsation
child.measurements.emitter.on("flow.predicted.downstream", (eventData) => {
this.logger.debug(`Flow prediction update from ${child.config.general.id}: ${eventData.value} ${eventData.unit}`);
//register this then as upstream flow that arrives at the station
this.measurements.type('flow').variant('predicted').position('in').value(eventData.value,eventData.timestamp,eventData.unit);
});
break;
default:
this.logger.warn(`nu such position ${child.config.functionality.positionVsParent}`);
}
}
// add one for group later
if( softwareType == "machineGroup" ){
}
// add one for pumping station
if ( softwareType == "pumpingStation"){
// Check if the machine is already registered
this.stations[child.config.general.id] === undefined ? this.machistationsnes[child.config.general.id] = child : this.logger.warn(`Machine ${child.config.general.id} is already registered.`);
//listen for machine pressure changes
this.logger.debug(`Listening for flow changes from machine ${child.config.general.id}`);
switch(child.config.functionality.positionVsParent){
case("downstream"):
//check for predicted outgoing flow at the connected child pumpingsation
child.measurements.emitter.on("flow.predicted.downstream", (eventData) => {
this.logger.debug(`Flow prediction update from ${child.config.general.id}: ${eventData.value} ${eventData.unit}`);
//register this then as upstream flow that arrives at the station
this.measurements.type('flow').variant('predicted').position('out').value(eventData.value,eventData.timestamp,eventData.unit);
});
break;
case("upstream"):
//check for predicted outgoing flow at the connected child pumpingsation
child.measurements.emitter.on("flow.predicted.downstream", (eventData) => {
this.logger.debug(`Flow prediction update from ${child.config.general.id}: ${eventData.value} ${eventData.unit}`);
//register this then as upstream flow that arrives at the station
this.measurements.type('flow').variant('predicted').position('in').value(eventData.value,eventData.timestamp,eventData.unit);
});
break;
default:
// there is no such thing as atequipment from 1 pumpingstation to another....
this.logger.warn(`nu such position ${child.config.functionality.positionVsParent} for pumping station`);
}
}
}
//in or outgoing flow = direction
_updateVolumePrediction(flowDir){
//get downflow
const seriesExists = this.measurements.type("flow").variant("predicted").position(flowDir).exists();
if(!seriesExists){return};
const series = this.measurements.type("flow").variant("predicted").position(flowDir);
const currFLow = series.getLaggedValue(0, "m3/s"); // { value, timestamp, unit }
const prevFlow = series.getLaggedValue(1, "m3/s"); // { value, timestamp, unit }
if (!currFLow || !prevFlow) return;
this.logger.debug(`currDownflow = ${currFLow.value} , prevDownFlow = ${prevFlow.value}`);
// calc difference in time
const deltaT = currFLow.timestamp - prevFlow.timestamp;
const deltaSeconds = deltaT / 1000;
if (deltaSeconds <= 0) {
this.logger.warn(`Flow integration aborted; invalid Δt=${deltaSeconds}s.`);
return;
}
const avgFlow = (currFLow.value + prevFlow.value) / 2;
const calcVol = avgFlow * deltaSeconds;
//substract seeing as this is downstream and is being pulled away from the pumpingstaion and keep track of status
const currVolume = this.measurements.type('volume').variant('predicted').position('atEquipment').getCurrentValue('m3');
let newVol = currVolume;
switch(flowDir){
case("out"):
newVol = currVolume - calcVol;
break;
case("in"):
newVol = currVolume + calcVol;
break;
default:
this.logger.error('Flow must come in or out of the station!');
}
this.measurements.type('volume').variant('predicted').position('atEquipment').value(newVol).unit('m3');
//convert to a predicted level
const newLevel = this._calcLevelFromVolume(newVol);
this.measurements.type('level').variant('predicted').position('atEquipment').value(newLevel).unit('m');
this.logger.debug(`new predicted volume : ${newVol} new predicted level: ${newLevel} `);
}
//trigger shutdown when level is too low and trigger no start flag for childs ?
safetyVolCheck(){
}
//update measured temperature to adjust density of liquid
updateMeasuredTemperature(){
}
//update measured flow and recalc
updateMeasuredFlow(){
}
//keep updating the volume / level when the flow is still active from a machine or machinegroup or incoming from another source
tick(){
//go through all the functions that require time based checks or updates
this._updateVolumePrediction("out"); //check for changes in outgoing flow
this._updateVolumePrediction("in"); // check for changes in incomming flow
//calc the most important values back to determine state and net up or downstream flow
this._calcNetFlow();
this._calcTimeRemaining();
}
_callMeasurementHandler(measurementType, value, position, context) {
switch (measurementType) {
case 'pressure':
@@ -86,7 +242,7 @@ class pumpingStation {
this.updatePosition();
break;
}
}
}
// context handler for pressure updates
updateMeasuredPressure(value, position, context = {}) {
@@ -108,6 +264,7 @@ class pumpingStation {
this.logger.warn(`No temperature measurement available, defaulting to 15C for pressure to level conversion.`);
this.measurements.type("temperature").variant("assumed").position("atEquipment").value(15, Date.now(), "C");
kelvinTemp = this.measurements.type('temperature').variant('assumed').position('atEquipment').getCurrentValue('K');
this.logger.debug(`Temperature is : ${kelvinTemp}`);
} else {
kelvinTemp = mTemp;
}
@@ -118,11 +275,10 @@ class pumpingStation {
const level = pressure_Pa / density * g;
this.measurements.type("level").variant("predicted").position(position).value(level);
//updatePredictedLevel(); ??
//updatePredictedLevel(); ?? OLIFANT!
//calculate how muc flow went in or out based on pressure difference
this.logger.debug(`Using pressure: ${value} for calculations`);
}
@@ -134,111 +290,89 @@ class pumpingStation {
const level = this.measurements.type("level").variant("measured").position(position).getCurrentValue('m');
//calc vol in m3
const volume = this._calcVolumeFromLevel(level);
this.measurements.type("volume").variant("measured").position("atEquipment").value(volume).unit('m3');
this.logger.debug(`basin minvol : ${this.basin.minVol}, cur volume : ${volume} / ${this.basin.maxVolOverflow}`);
//calc the most important values back to determine state and net up or downstream flow
this._calcNetFlow();
const proc = this.interpolate.interpolate_lin_single_point(volume,this.basin.minVol,this.basin.maxVolOverflow,0,100);
this.logger.debug(`PROC volume : ${proc}`);
this.measurements.type("volume").variant("measured").position("atEquipment").value(volume).unit('m3');
this.measurements.type("volume").variant("procent").position("atEquipment").value(proc);
}
_calcNetFlow() {
let netFlow = null;
const netFlow_FlowSensor = Math.abs(this.measurements.type("flow").variant("measured").difference({ from: "downstream", to: "upstream", unit: "m3/s" }));
const netFlow_LevelSensor = this._calcNetFlowFromLevelDiff();
const netFlow_PredictedFlow = Math.abs(this.measurements.type('flow').variant('predicted').difference({ from: "in", to: "out", unit: "m3/s" }));
switch (true){
//prefer flowsensor netflow
case (netFlow_FlowSensor!=null):
return netFlow_FlowSensor;
//try using level difference if possible to infer netflow
case (netFlow_LevelSensor!= null):
return netFlow_LevelSensor;
case (netFlow_PredictedFlow != null):
return netFlow_PredictedFlow;
default:
this.logger.warn(`Can't calculate netflow without the proper measurements or predictions`);
return null;
}
}
_calcRemainingTime(level,variant){
const { heightOverflow, heightOutlet, surfaceArea } = this.basin;
const flowDiff = this.measurements.type("flow").variant(variant).difference({ from: "downstream", to: "upstream", unit: "m3/s" });
const flowBased = this._calcNetFlowFromMeasurements({
heightOverflow,
heightOutlet,
surfaceArea
});
switch(true){
case(flowDiff>0):
remainingHeight = Math.max(heightOverflow - level, 0);
this.state.seconds = remainingHeight * surfaceArea / flowDiff;
break;
const levelBased = this._calcNetFlowFromLevel({
heightOverflow,
heightOutlet,
surfaceArea
});
case(flowDiff<0):
remainingHeight = Math.max(level - heightOutlet, 0);
this.state.seconds = remainingHeight * surfaceArea / Math.abs(flowDiff);
break;
if (flowBased && levelBased) {
this.logger.debug(
`Flow vs Level comparison | flow=${flowBased.netFlowRate.toFixed(3)} ` +
`m3/s, level=${levelBased.netFlowRate.toFixed(3)} m3/s`
);
}
default:
this.logger.debug(`doing nothing with level calc`)
const effective = flowBased || levelBased;
if (effective) {
this.state = effective.state;
this.state.netFlowSource = flowBased ? (levelBased ? "flow+level" : "flow") : "level";
this.logger.debug(`Net-flow state: ${JSON.stringify(this.state)}`);
} else {
this.logger.debug("Net-flow state: insufficient data");
}
}
return effective;
}
_calcNetFlowFromMeasurements({ heightOverflow, heightOutlet, surfaceArea }) {
const flowDiff = this.measurements
.type("flow")
.variant("measured")
.difference({ from: "downstream", to: "upstream", unit: "m3/s" });
_calcDirection(flowDiff){
const level = this.measurements
.type("level")
.variant("measured")
.position("atEquipment")
.getCurrentValue("m");
let direction = null;
const flowUpstream = this.measurements
.type("flow")
.variant("measured")
.position("upstream")
.getCurrentValue("m3/s");
switch (true){
case flowDiff > flowThreshold:
direction = "filling";
break;
const flowDownstream = this.measurements
.type("flow")
.variant("measured")
.position("downstream")
.getCurrentValue("m3/s");
case flowDiff < -flowThreshold:
direction = "draining";
break;
case flowDiff < flowThreshold && flowDiff > -flowThreshold:
direction = "stable";
break;
default:
this.logger.warn("Uknown state direction detected??");
return null;
if (flowDiff === null || level === null) {
this.logger.warn(`no flowdiff ${flowDiff} or level ${level} found escaping`);
return null;
}
const flowThreshold = 0.1; // m³/s
const state = { direction: "stable", seconds: 0, netUpstream: flowUpstream ?? 0, netDownstream: flowDownstream ?? 0 };
if (flowDiff > flowThreshold) {
state.direction = "filling";
const remainingHeight = Math.max(heightOverflow - level, 0);
state.seconds = remainingHeight * surfaceArea / flowDiff;
} else if (flowDiff < -flowThreshold) {
state.direction = "draining";
const remainingHeight = Math.max(level - heightOutlet, 0);
state.seconds = remainingHeight * surfaceArea / Math.abs(flowDiff);
}
this.measurements
.type("netFlowRate")
.variant("predicted")
.position("atEquipment")
.value(flowDiff)
.unit("m3/s");
this.logger.debug(
`Flow-based net flow | diff=${flowDiff.toFixed(3)} m3/s, level=${level.toFixed(3)} m`
);
return { source: "flow", netFlowRate: flowDiff, state };
return direction;
}
_calcNetFlowFromLevel({ heightOverflow, heightOutlet, surfaceArea }) {
const levelObj = this.measurements
.type("level")
.variant("measured")
.position("atEquipment");
_calcNetFlowFromLevelDiff() {
const { surfaceArea } = this.basin;
const levelObj = this.measurements.type("level").variant("measured").position("atEquipment");
const level = levelObj.getCurrentValue("m");
const prevLevel = levelObj.getLaggedValue(2, "m"); // { value, timestamp, unit }
const measurement = levelObj.get();
@@ -257,38 +391,12 @@ class pumpingStation {
const lvlDiff = level - prevLevel.value;
const lvlRate = lvlDiff / deltaSeconds; // m/s
const levelRateThreshold = 0.1 / surfaceArea; // same 0.1 m³/s threshold translated to height
const state = { direction: "stable", seconds: 0, netUpstream: 0, netDownstream: 0 };
if (lvlRate > levelRateThreshold) {
state.direction = "filling";
const remainingHeight = Math.max(heightOverflow - level, 0);
state.seconds = remainingHeight / lvlRate;
} else if (lvlRate < -levelRateThreshold) {
state.direction = "draining";
const remainingHeight = Math.max(level - heightOutlet, 0);
state.seconds = remainingHeight / Math.abs(lvlRate);
}
const netFlowRate = lvlRate * surfaceArea; // m³/s inferred from level trend
this.measurements
.type("netFlowRate")
.variant("predicted")
.position("atEquipment")
.value(netFlowRate)
.unit("m3/s");
this.logger.warn(
`Level-based net flow | rate=${lvlRate.toExponential(3)} m/s, inferred=${netFlowRate.toFixed(3)} m3/s`
);
return { source: "level", netFlowRate, state };
return netFlowRate;
}
initBasinProperties() {
// Load and calc basic params
const volEmptyBasin = this.config.basin.volume;
@@ -301,8 +409,8 @@ class pumpingStation {
const surfaceArea = volEmptyBasin / heightBasin;
const maxVol = heightBasin * surfaceArea; // if Basin where to ever fill up completely this is the water volume
const maxVolOverflow = heightOverflow * surfaceArea ; // Max water volume before you start loosing water to overflow
const minVol = heightInlet * surfaceArea;
const minVolOut = heightOutlet * surfaceArea ; // this will indicate if its an open end or a closed end.
const minVol = heightOutlet * surfaceArea;
const minVolOut = heightInlet * surfaceArea ; // this will indicate if its an open end or a closed end.
this.basin.volEmptyBasin = volEmptyBasin ;
this.basin.heightBasin = heightBasin ;
@@ -315,11 +423,14 @@ class pumpingStation {
this.basin.minVol = minVol ;
this.basin.minVolOut = minVolOut ;
this.logger.debug(
`Basin initialized | area=${surfaceArea.toFixed(2)} m², max=${maxVol.toFixed(2)} m³, overflow=${maxVolOverflow.toFixed(2)}`
);
//init predicted min volume to min vol in order to have a starting point
this.measurements.type("volume").variant("predicted").position("atEquipment").value(minVol).unit('m3');
this.logger.debug(`
Basin initialized | area=${surfaceArea.toFixed(2)} m²,
max=${maxVol.toFixed(2)} m³,
overflow=${maxVolOverflow.toFixed(2)}`
);
}
_calcVolumeFromLevel(level) {
@@ -327,21 +438,230 @@ _calcVolumeFromLevel(level) {
return Math.max(level, 0) * surfaceArea;
}
_calcLevelFromVolume(vol){
const surfaceArea = this.basin.surfaceArea;
return Math.max(vol, 0) / surfaceArea;
}
getOutput() {
return {
volume_m3: this.measurements.type("volume").variant("measured").position("atEquipment").getCurrentValue('m3') ,
};
}
getOutput() {
// Improved output object generation
const output = {};
//build the output object
this.measurements.getTypes().forEach(type => {
this.measurements.getVariants(type).forEach(variant => {
this.measurements.getPositions(variant).forEach(position => {
const sample = this.measurements.type(type).variant(variant).position(position);
output[`${type}.${variant}.${position}`] = sample.getCurrentValue();
});
});
});
//fill in the rest of the output object
output["state"] = this.state;
output["basin"] = this.basin;
if(this.flowDrift != null){
const flowDrift = this.flowDrift;
output["flowNrmse"] = flowDrift.nrmse;
output["flowLongterNRMSD"] = flowDrift.longTermNRMSD;
output["flowImmediateLevel"] = flowDrift.immediateLevel;
output["flowLongTermLevel"] = flowDrift.longTermLevel;
}
return output;
}
}
module.exports = pumpingStation;
/* ------------------------------------------------------------------------- */
/* Example: pumping station + rotating machine + measurements (stand-alone) */
/* ------------------------------------------------------------------------- */
const PumpingStation = require("./specificClass");
const RotatingMachine = require("../../rotatingMachine/src/specificClass");
const Measurement = require("../../measurement/src/specificClass");
/** Helpers ******************************************************************/
function createPumpingStationConfig(name) {
return {
general: {
logging: { enabled: true, logLevel: "debug" },
name,
id: `${name}-${Date.now()}`,
unit: "m3/h"
},
functionality: {
softwareType: "pumpingStation",
role: "stationcontroller"
},
basin: {
volume: 43.75,
height: 3.5,
heightInlet: 0.3,
heightOutlet: 0.2,
heightOverflow: 3.0
},
hydraulics: {
refHeight: "NAP",
basinBottomRef: 0
}
};
}
function createLevelMeasurementConfig(name) {
return {
general: {
logging: { enabled: true, logLevel: "debug" },
name,
id: `${name}-${Date.now()}`,
unit: "m"
},
functionality: {
softwareType: "measurement",
role: "sensor",
positionVsParent: "atEquipment"
},
asset: {
category: "sensor",
type: "level",
model: "demo-level",
supplier: "demoCo",
unit: "m"
},
scaling: { enabled: false },
smoothing: { smoothWindow: 5, smoothMethod: "none" }
};
}
function createFlowMeasurementConfig(name, position) {
return {
general: {
logging: { enabled: true, logLevel: "debug" },
name,
id: `${name}-${Date.now()}`,
unit: "m3/s"
},
functionality: {
softwareType: "measurement",
role: "sensor",
positionVsParent: position
},
asset: {
category: "sensor",
type: "flow",
model: "demo-flow",
supplier: "demoCo",
unit: "m3/s"
},
scaling: { enabled: false },
smoothing: { smoothWindow: 5, smoothMethod: "none" }
};
}
function createMachineConfig(name) {
curve = require('C:/Users/zn375/.node-red/public/fallbackData.json');
return {
general: {
name: name,
logging: {
enabled: true,
logLevel: "warn",
}
},
asset: {
supplier: "Hydrostal",
type: "pump",
category: "centrifugal",
model: "hidrostal-H05K-S03R", // Ensure this field is present.
}
}
}
function createMachineStateConfig() {
return {
general: {
logging: {
enabled: true,
logLevel: "debug",
},
},
// Your custom config here (or leave empty for defaults)
movement: {
speed: 1,
},
time: {
starting: 2,
warmingup: 3,
stopping: 2,
coolingdown: 3,
},
}
}
// convenience for seeding measurements
function pushSample(measurement, type, value, unit) {
const pos = measurement.config.functionality.positionVsParent;
measurement.measurements
.type(type)
.variant("measured")
.position(pos)
.value(value, Date.now(), unit);
}
/** Demo *********************************************************************/
(async function demoStationWithPump() {
const station = new PumpingStation(createPumpingStationConfig("PumpingStationDemo"));
const pump = new RotatingMachine(createMachineConfig("Pump1"), createMachineStateConfig());
const levelSensor = new Measurement(createLevelMeasurementConfig("WetWellLevel"));
const upstreamFlow = new Measurement(createFlowMeasurementConfig("InfluentFlow", "upstream"));
const downstreamFlow = new Measurement(createFlowMeasurementConfig("PumpDischargeFlow", "downstream"));
// station uses the sensors
/*
station.childRegistrationUtils.registerChild(levelSensor, levelSensor.config.functionality.softwareType);
station.childRegistrationUtils.registerChild(upstreamFlow, upstreamFlow.config.functionality.softwareType);
station.childRegistrationUtils.registerChild(downstreamFlow, downstreamFlow.config.functionality.softwareType);
*/
// pump owns the downstream flow sensor
pump.childRegistrationUtils.registerChild(downstreamFlow, downstreamFlow.config.functionality.positionVsParent);
station.childRegistrationUtils.registerChild(pump,"downstream");
setInterval(() => station.tick(), 1000);
// seed a starting level & flow
/*
pushSample(levelSensor, "level", 1.8, "m");
pushSample(upstreamFlow, "flow", 0.35, "m3/s");
pushSample(downstreamFlow, "flow", 0.20, "m3/s");
*/
await new Promise(resolve => setTimeout(resolve, 20));
// pump increases discharge flow
/*
pushSample(downstreamFlow, "flow", 0.28, "m3/s");
pushSample(upstreamFlow, "flow", 0.40, "m3/s");
pushSample(levelSensor, "level", 1.85, "m");
*/
console.log("Station output:", station.getOutput());
await pump.handleInput("parent", "execSequence", "startup");
await pump.handleInput("parent", "execMovement", 50);
console.log("Station state:", station.state);
console.log("Station output:", station.getOutput());
console.log("Pump state:", pump.state.getCurrentState());
})();
/*
//
//coolprop example
(async () => {
const PropsSI = await coolprop.getPropsSI();