Compare commits

..

1 Commits

Author SHA1 Message Date
znetsixe
6e9ae9fc7e Need to stich everything together then V1.0 is done. 2025-10-23 18:04:18 +02:00

View File

@@ -28,6 +28,7 @@ class pumpingStation {
this.parent = {}; // object to hold parent information for when we follow flow directions.
this.child = {}; // object to hold child information so we know on what to subscribe
this.machines = {}; // object to hold child machine information
this.stations = {}; // object to hold station information
this.childRegistrationUtils = new childRegistrationUtils(this); // Child registration utility
this.logger.debug('pumpstation Initialized with all helpers');
@@ -68,11 +69,30 @@ class pumpingStation {
//listen for machine pressure changes
this.logger.debug(`Listening for flow changes from machine ${child.config.general.id}`);
switch(child.config.functionality.positionVsParent){
case("downstream"):
case("atequipment"): //in case of atequipment we also assume downstream seeing as it is registered at this pumpingstation as part of it.
//for now lets focus on handling downstream predicted flow
child.measurements.emitter.on("flow.predicted.downstream", (eventData) => {
this.logger.debug(`Flow prediction update from ${child.config.general.id}: ${eventData.value} ${eventData.unit}`);
this.measurements.type('flow').variant('predicted').position('atEquipment').value(eventData.value,eventData.timestamp,eventData.unit);
this.measurements.type('flow').variant('predicted').position('out').value(eventData.value,eventData.timestamp,eventData.unit);
});
break;
case("upstream"):
//check for predicted outgoing flow at the connected child pumpingsation
child.measurements.emitter.on("flow.predicted.downstream", (eventData) => {
this.logger.debug(`Flow prediction update from ${child.config.general.id}: ${eventData.value} ${eventData.unit}`);
//register this then as upstream flow that arrives at the station
this.measurements.type('flow').variant('predicted').position('in').value(eventData.value,eventData.timestamp,eventData.unit);
});
break;
default:
this.logger.warn(`nu such position ${child.config.functionality.positionVsParent}`);
}
}
// add one for group later
@@ -80,25 +100,57 @@ class pumpingStation {
}
// add one for pumping station
if ( softwareType == "pumpingStation"){
// Check if the machine is already registered
this.stations[child.config.general.id] === undefined ? this.machistationsnes[child.config.general.id] = child : this.logger.warn(`Machine ${child.config.general.id} is already registered.`);
//listen for machine pressure changes
this.logger.debug(`Listening for flow changes from machine ${child.config.general.id}`);
switch(child.config.functionality.positionVsParent){
case("downstream"):
//check for predicted outgoing flow at the connected child pumpingsation
child.measurements.emitter.on("flow.predicted.downstream", (eventData) => {
this.logger.debug(`Flow prediction update from ${child.config.general.id}: ${eventData.value} ${eventData.unit}`);
//register this then as upstream flow that arrives at the station
this.measurements.type('flow').variant('predicted').position('out').value(eventData.value,eventData.timestamp,eventData.unit);
});
break;
case("upstream"):
//check for predicted outgoing flow at the connected child pumpingsation
child.measurements.emitter.on("flow.predicted.downstream", (eventData) => {
this.logger.debug(`Flow prediction update from ${child.config.general.id}: ${eventData.value} ${eventData.unit}`);
//register this then as upstream flow that arrives at the station
this.measurements.type('flow').variant('predicted').position('in').value(eventData.value,eventData.timestamp,eventData.unit);
});
break;
default:
// there is no such thing as atequipment from 1 pumpingstation to another....
this.logger.warn(`nu such position ${child.config.functionality.positionVsParent} for pumping station`);
}
}
}
//update prediction in outgoing downstream flow
_updateDownstreamFlowPrediction(){
//in or outgoing flow = direction
_updateVolumePrediction(flowDir){
//get downflow
const downFlowExists = this.measurements.type("flow").variant("predicted").position("atEquipment").exists();
if(!downFlowExists){return};
const seriesExists = this.measurements.type("flow").variant("predicted").position(flowDir).exists();
if(!seriesExists){return};
const downFlow = this.measurements.type("flow").variant("predicted").position("atEquipment");
const currDownFlow = downFlow.getLaggedValue(0, "m3/s"); // { value, timestamp, unit }
const prevDownFlow = downFlow.getLaggedValue(1, "m3/s"); // { value, timestamp, unit }
const series = this.measurements.type("flow").variant("predicted").position(flowDir);
const currFLow = series.getLaggedValue(0, "m3/s"); // { value, timestamp, unit }
const prevFlow = series.getLaggedValue(1, "m3/s"); // { value, timestamp, unit }
if (!currDownFlow || !prevDownFlow) return;
if (!currFLow || !prevFlow) return;
this.logger.debug(`currDownflow = ${currDownFlow.value} , prevDownFlow = ${prevDownFlow.value}`);
this.logger.debug(`currDownflow = ${currFLow.value} , prevDownFlow = ${prevFlow.value}`);
// calc difference in time
const deltaT = currDownFlow.timestamp - prevDownFlow.timestamp;
const deltaT = currFLow.timestamp - prevFlow.timestamp;
const deltaSeconds = deltaT / 1000;
if (deltaSeconds <= 0) {
@@ -106,12 +158,26 @@ class pumpingStation {
return;
}
const avgFlow = (currDownFlow.value + prevDownFlow.value) / 2;
const volumeSubstracted = avgFlow * deltaSeconds;
const avgFlow = (currFLow.value + prevFlow.value) / 2;
const calcVol = avgFlow * deltaSeconds;
//substract seeing as this is downstream and is being pulled away from the pumpingstaion and keep track of status
const currVolume = this.measurements.type('volume').variant('predicted').position('atEquipment').getCurrentValue('m3');
const newVol = currVolume - volumeSubstracted;
let newVol = currVolume;
switch(flowDir){
case("out"):
newVol = currVolume - calcVol;
break;
case("in"):
newVol = currVolume + calcVol;
break;
default:
this.logger.error('Flow must come in or out of the station!');
}
this.measurements.type('volume').variant('predicted').position('atEquipment').value(newVol).unit('m3');
//convert to a predicted level
@@ -123,10 +189,7 @@ class pumpingStation {
}
//update prediction in incomming upstream flow
_updateUpstreamFlowPrediction(){
}
//trigger shutdown when level is too low and trigger no start flag for childs ?
safetyVolCheck(){
@@ -146,7 +209,12 @@ class pumpingStation {
//keep updating the volume / level when the flow is still active from a machine or machinegroup or incoming from another source
tick(){
//go through all the functions that require time based checks or updates
this._updateDownstreamFlowPrediction();
this._updateVolumePrediction("out"); //check for changes in outgoing flow
this._updateVolumePrediction("in"); // check for changes in incomming flow
//calc the most important values back to determine state and net up or downstream flow
this._calcNetFlow();
this._calcTimeRemaining();
}
@@ -229,81 +297,81 @@ class pumpingStation {
this.measurements.type("volume").variant("measured").position("atEquipment").value(volume).unit('m3');
this.measurements.type("volume").variant("procent").position("atEquipment").value(proc);
//calc the most important values back to determine state and net up or downstream flow
this._calcNetFlow();
}
_calcNetFlow() {
const { heightOverflow, heightOutlet, surfaceArea } = this.basin;
let netFlow = null;
const flowBased = this._calcNetFlowFromMeasurements({
heightOverflow,
heightOutlet,
surfaceArea
});
const netFlow_FlowSensor = Math.abs(this.measurements.type("flow").variant("measured").difference({ from: "downstream", to: "upstream", unit: "m3/s" }));
const netFlow_LevelSensor = this._calcNetFlowFromLevelDiff();
const netFlow_PredictedFlow = Math.abs(this.measurements.type('flow').variant('predicted').difference({ from: "in", to: "out", unit: "m3/s" }));
const levelBased = this._calcNetFlowFromLevel({
heightOverflow,
heightOutlet,
surfaceArea
});
if (flowBased && levelBased) {
this.logger.debug(
`Flow vs Level comparison | flow=${flowBased.netFlowRate.value.toFixed(3)} ` +
`m3/s, level=${levelBased.netFlowRate.toFixed(3)} m3/s`
);
}
const effective = flowBased || levelBased;
if (effective) {
this.state = effective.state;
this.state.netFlowSource = flowBased ? (levelBased ? "flow+level" : "flow") : "level";
this.logger.debug(`Net-flow state: ${JSON.stringify(this.state)}`);
} else {
this.logger.debug("Net-flow state: insufficient data");
}
return effective;
}
_calcNetFlowFromMeasurements({ heightOverflow, heightOutlet, surfaceArea }) {
const flowDiff = this.measurements.type("flow").variant("measured").difference({ from: "downstream", to: "upstream", unit: "m3/s" });
const level = this.measurements.type("level").variant("measured").position("atEquipment").getCurrentValue("m");
const flowUpstream = this.measurements.type("flow").variant("measured").position("upstream").getCurrentValue("m3/s");
const flowDownstream = this.measurements.type("flow").variant("measured").position("downstream").getCurrentValue("m3/s");
if (flowDiff === null || level === null) {
this.logger.warn(`no flowdiff ${flowDiff} or level ${level} found escaping`);
switch (true){
//prefer flowsensor netflow
case (netFlow_FlowSensor!=null):
return netFlow_FlowSensor;
//try using level difference if possible to infer netflow
case (netFlow_LevelSensor!= null):
return netFlow_LevelSensor;
case (netFlow_PredictedFlow != null):
return netFlow_PredictedFlow;
default:
this.logger.warn(`Can't calculate netflow without the proper measurements or predictions`);
return null;
}
const flowThreshold = 0.1; // m³/s
const state = { direction: "stable", seconds: 0, netUpstream: flowUpstream ?? 0, netDownstream: flowDownstream ?? 0 };
if (flowDiff > flowThreshold) {
state.direction = "filling";
const remainingHeight = Math.max(heightOverflow - level, 0);
state.seconds = remainingHeight * surfaceArea / flowDiff;
} else if (flowDiff < -flowThreshold) {
state.direction = "draining";
const remainingHeight = Math.max(level - heightOutlet, 0);
state.seconds = remainingHeight * surfaceArea / Math.abs(flowDiff);
}
this.measurements.type("netFlowRate").variant("predicted").position("atEquipment").value(flowDiff).unit("m3/s");
_calcRemainingTime(level,variant){
this.logger.debug(
`Flow-based net flow | diff=${flowDiff.value.toFixed(3)} m3/s, level=${level.toFixed(3)} m`
);
const { heightOverflow, heightOutlet, surfaceArea } = this.basin;
const flowDiff = this.measurements.type("flow").variant(variant).difference({ from: "downstream", to: "upstream", unit: "m3/s" });
switch(true){
case(flowDiff>0):
remainingHeight = Math.max(heightOverflow - level, 0);
this.state.seconds = remainingHeight * surfaceArea / flowDiff;
break;
case(flowDiff<0):
remainingHeight = Math.max(level - heightOutlet, 0);
this.state.seconds = remainingHeight * surfaceArea / Math.abs(flowDiff);
break;
default:
this.logger.debug(`doing nothing with level calc`)
return { source: "flow", netFlowRate: flowDiff, state };
}
_calcNetFlowFromLevel({ heightOverflow, heightOutlet, surfaceArea }) {
}
_calcDirection(flowDiff){
let direction = null;
switch (true){
case flowDiff > flowThreshold:
direction = "filling";
break;
case flowDiff < -flowThreshold:
direction = "draining";
break;
case flowDiff < flowThreshold && flowDiff > -flowThreshold:
direction = "stable";
break;
default:
this.logger.warn("Uknown state direction detected??");
return null;
}
return direction;
}
_calcNetFlowFromLevelDiff() {
const { surfaceArea } = this.basin;
const levelObj = this.measurements.type("level").variant("measured").position("atEquipment");
const level = levelObj.getCurrentValue("m");
const prevLevel = levelObj.getLaggedValue(2, "m"); // { value, timestamp, unit }
@@ -323,29 +391,9 @@ class pumpingStation {
const lvlDiff = level - prevLevel.value;
const lvlRate = lvlDiff / deltaSeconds; // m/s
const levelRateThreshold = 0.1 / surfaceArea; // same 0.1 m³/s threshold translated to height
const state = { direction: "stable", seconds: 0, netUpstream: 0, netDownstream: 0 };
if (lvlRate > levelRateThreshold) {
state.direction = "filling";
const remainingHeight = Math.max(heightOverflow - level, 0);
state.seconds = remainingHeight / lvlRate;
} else if (lvlRate < -levelRateThreshold) {
state.direction = "draining";
const remainingHeight = Math.max(level - heightOutlet, 0);
state.seconds = remainingHeight / Math.abs(lvlRate);
}
const netFlowRate = lvlRate * surfaceArea; // m³/s inferred from level trend
this.measurements.type("netFlowRate").variant("predicted").position("atEquipment").value(netFlowRate).unit("m3/s");
this.logger.warn(
`Level-based net flow | rate=${lvlRate.toExponential(3)} m/s, inferred=${netFlowRate.toFixed(3)} m3/s`
);
return { source: "level", netFlowRate, state };
return netFlowRate;
}
initBasinProperties() {
@@ -383,8 +431,6 @@ class pumpingStation {
max=${maxVol.toFixed(2)} m³,
overflow=${maxVolOverflow.toFixed(2)}`
);
}
_calcVolumeFromLevel(level) {
@@ -399,10 +445,32 @@ _calcLevelFromVolume(vol){
getOutput() {
return {
volume_m3: this.measurements.type("volume").variant("measured").position("atEquipment").getCurrentValue('m3') ,
// Improved output object generation
const output = {};
//build the output object
this.measurements.getTypes().forEach(type => {
this.measurements.getVariants(type).forEach(variant => {
this.measurements.getPositions(variant).forEach(position => {
const sample = this.measurements.type(type).variant(variant).position(position);
output[`${type}.${variant}.${position}`] = sample.getCurrentValue();
});
});
});
};
//fill in the rest of the output object
output["state"] = this.state;
output["basin"] = this.basin;
if(this.flowDrift != null){
const flowDrift = this.flowDrift;
output["flowNrmse"] = flowDrift.nrmse;
output["flowLongterNRMSD"] = flowDrift.longTermNRMSD;
output["flowImmediateLevel"] = flowDrift.immediateLevel;
output["flowLongTermLevel"] = flowDrift.longTermLevel;
}
return output;
}
}
@@ -584,7 +652,7 @@ function pushSample(measurement, type, value, unit) {
pushSample(upstreamFlow, "flow", 0.40, "m3/s");
pushSample(levelSensor, "level", 1.85, "m");
*/
console.log("Station output:", station.getOutput());
await pump.handleInput("parent", "execSequence", "startup");
await pump.handleInput("parent", "execMovement", 50);
console.log("Station state:", station.state);