Files
machineGroupControl/src/groupcontrol.test.js
2025-10-02 17:08:41 +02:00

288 lines
10 KiB
JavaScript

// ...existing code...
const MachineGroup = require('./specificClass.js');
const Machine = require('../../rotatingMachine/src/specificClass');
const Measurement = require('../../measurement/src/specificClass');
const specs = require('../../generalFunctions/datasets/assetData/curves/hidrostal-H05K-S03R.json');
const stateConfig = { time:{starting:0,warmingup:0,stopping:0,coolingdown:0}, movement:{speed:1000,mode:"staticspeed"} };
const ptConfig = {
general:{ logging:{enabled:false,logLevel:"warn"}, name:"testpt", id:"pt-1", unit:"mbar" },
functionality:{ softwareType:"measurement", role:"sensor" },
asset:{ category:"sensor", type:"pressure", model:"testmodel", supplier:"vega", unit:"mbar" },
scaling:{ absMin:0, absMax:4000 }
};
const testSuite = [];
const efficiencyComparisons = [];
function logPass(name, details="") {
const entry = { name, status:"PASS", details };
testSuite.push(entry);
console.log(`${name}${details ? `${details}` : ""}`);
}
function logFail(name, error) {
const entry = { name, status:"FAIL", details:error?.message || error };
testSuite.push(entry);
console.error(`${name}${entry.details}`);
}
function approxEqual(actual, expected, tolerancePct=1) {
const tolerance = (expected * tolerancePct) / 100;
return actual >= expected - tolerance && actual <= expected + tolerance;
}
async function sleep(ms){ return new Promise(resolve => setTimeout(resolve, ms)); }
function createMachineConfig(id,label) {
return {
general:{ logging:{enabled:false,logLevel:"warn"}, name:label, id, unit:"m3/h" },
functionality:{ softwareType:"machine", role:"rotationaldevicecontroller" },
asset:{ category:"pump", type:"centrifugal", model:"hidrostal-h05k-s03r", supplier:"hydrostal", machineCurve:specs },
mode:{
current:"auto",
allowedActions:{
auto:["execSequence","execMovement","flowMovement","statusCheck"],
virtualControl:["execMovement","statusCheck"],
fysicalControl:["statusCheck"]
},
allowedSources:{
auto:["parent","GUI"],
virtualControl:["GUI"],
fysicalControl:["fysical"]
}
},
sequences:{
startup:["starting","warmingup","operational"],
shutdown:["stopping","coolingdown","idle"],
emergencystop:["emergencystop","off"],
boot:["idle","starting","warmingup","operational"]
}
};
}
async function bootstrapGroup() {
const groupCfg = {
general:{ logging:{enabled:false,logLevel:"warn"}, name:"testmachinegroup" },
functionality:{ softwareType:"machinegroup", role:"groupcontroller" },
scaling:{ current:"normalized" },
mode:{ current:"optimalcontrol" }
};
const mg = new MachineGroup(groupCfg);
const pt = new Measurement(ptConfig);
for (let idx=1; idx<=2; idx++){
const machine = new Machine(createMachineConfig(String(idx),`machine-${idx}`), stateConfig);
mg.childRegistrationUtils.registerChild(machine,"downstream");
machine.childRegistrationUtils.registerChild(pt,"downstream");
}
pt.calculateInput(1000);
await sleep(10);
return { mg, pt };
}
function captureState(mg,label){
return {
label,
machines: Object.entries(mg.machines).map(([id,machine]) => ({
id,
state: machine.state.getCurrentState(),
position: machine.state.getCurrentPosition(),
predictedFlow: machine.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0,
predictedPower: machine.measurements.type("power").variant("predicted").position("upstream").getCurrentValue() || 0
})),
totals: {
flow: mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0,
power: mg.measurements.type("power").variant("predicted").position("upstream").getCurrentValue() || 0,
efficiency: mg.measurements.type("efficiency").variant("predicted").position("downstream").getCurrentValue() || 0
}
};
}
async function testNormalizedScaling(mg,pt){
const label = "Normalized scaling tracks expected flow";
try{
mg.setScaling("normalized");
const dynamic = mg.calcDynamicTotals();
const checkpoints = [0,10,25,50,75,100];
for (const demand of checkpoints){
await mg.handleInput("parent", demand);
pt.calculateInput(1400);
await sleep(20);
const totals = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
const expected = dynamic.flow.min + (demand/100)*(dynamic.flow.max - dynamic.flow.min);
if(!approxEqual(totals, expected, 2)){
throw new Error(`Flow ${totals.toFixed(2)} outside expectation ${expected.toFixed(2)} @ ${demand}%`);
}
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function testAbsoluteScaling(mg,pt){
const label = "Absolute scaling accepts direct flow targets";
try{
mg.setScaling("absolute");
mg.setMode("optimalcontrol");
const absMin = mg.dynamicTotals.flow.min;
const absMax = mg.dynamicTotals.flow.max;
const demandPoints = [absMin, absMin+20, (absMin+absMax)/2, absMax-20];
for(const setpoint of demandPoints){
await mg.handleInput("parent", setpoint);
pt.calculateInput(1400);
await sleep(20);
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
if(!approxEqual(flow, setpoint, 2)){
throw new Error(`Flow ${flow.toFixed(2)} != demand ${setpoint.toFixed(2)}`);
}
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function testModeTransitions(mg,pt){
const label = "Mode transitions keep machines responsive";
try{
const modes = ["optimalcontrol","prioritycontrol","prioritypercentagecontrol"];
mg.setScaling("normalized");
for(const mode of modes){
mg.setMode(mode);
await mg.handleInput("parent", 50);
pt.calculateInput(1300);
await sleep(20);
const snapshot = captureState(mg, mode);
const active = snapshot.machines.filter(m => m.state !== "idle");
if(active.length === 0){
throw new Error(`No active machines after switching to ${mode}`);
}
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function testRampBehaviour(mg,pt){
const label = "Ramp up/down keeps monotonic flow";
try{
mg.setMode("optimalcontrol");
mg.setScaling("normalized");
const upDemands = [0,20,40,60,80,100];
let lastFlow = 0;
for(const demand of upDemands){
await mg.handleInput("parent", demand);
pt.calculateInput(1500);
await sleep(15);
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
if(flow < lastFlow - 1){
throw new Error(`Flow decreased during ramp up: ${flow.toFixed(2)} < ${lastFlow.toFixed(2)}`);
}
lastFlow = flow;
}
const downDemands = [100,80,60,40,20,0];
lastFlow = Infinity;
for(const demand of downDemands){
await mg.handleInput("parent", demand);
pt.calculateInput(1200);
await sleep(15);
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
if(flow > lastFlow + 1){
throw new Error(`Flow increased during ramp down: ${flow.toFixed(2)} > ${lastFlow.toFixed(2)}`);
}
lastFlow = flow;
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function testPressureAdaptation(mg,pt){
const label = "Pressure changes update predictions";
try{
mg.setMode("optimalcontrol");
mg.setScaling("normalized");
const pressures = [800,1200,1600,2000];
let previousFlow = null;
for(const p of pressures){
pt.calculateInput(p);
await mg.handleInput("parent", 50);
await sleep(20);
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
if(previousFlow !== null && Math.abs(flow - previousFlow) < 0.5){
throw new Error(`Flow did not react to pressure shift (${previousFlow.toFixed(2)} -> ${flow.toFixed(2)})`);
}
previousFlow = flow;
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function comparePriorityVsOptimal(mg, pt){
const label = "Priority vs Optimal efficiency comparison";
try{
mg.setScaling("normalized");
const pressures = [800, 1100, 1400, 1700];
const demands = [...Array(21)].map((_, idx) => idx * 5);
for (const pressure of pressures) {
pt.calculateInput(pressure);
await sleep(15);
for (const demand of demands) {
mg.setMode("optimalcontrol");
await mg.handleInput("parent", demand);
pt.calculateInput(pressure);
await sleep(20);
const optimalTotals = captureState(mg, `optimal-${pressure}-${demand}`).totals;
mg.setMode("prioritycontrol");
await mg.handleInput("parent", demand);
pt.calculateInput(pressure);
await sleep(20);
const priorityTotals = captureState(mg, `priority-${pressure}-${demand}`).totals;
efficiencyComparisons.push({
pressure,
demandPercent: demand,
optimalFlow: Number(optimalTotals.flow.toFixed(3)),
optimalPower: Number(optimalTotals.power.toFixed(3)),
optimalEfficiency: Number((optimalTotals.efficiency || 0).toFixed(4)),
priorityFlow: Number(priorityTotals.flow.toFixed(3)),
priorityPower: Number(priorityTotals.power.toFixed(3)),
priorityEfficiency: Number((priorityTotals.efficiency || 0).toFixed(4)),
efficiencyDelta: Number(((priorityTotals.efficiency || 0) - (optimalTotals.efficiency || 0)).toFixed(4)),
powerDelta: Number((priorityTotals.power - optimalTotals.power).toFixed(3))
});
}
}
logPass(label, "efficiencyComparisons array populated");
} catch (err) {
logFail(label, err);
}
}
async function run(){
console.log("🚀 Starting machine-group integration tests...");
const { mg, pt } = await bootstrapGroup();
await testNormalizedScaling(mg, pt);
await testAbsoluteScaling(mg, pt);
await testModeTransitions(mg, pt);
await testRampBehaviour(mg, pt);
await testPressureAdaptation(mg, pt);
await comparePriorityVsOptimal(mg, pt);
console.log("\n📋 TEST SUMMARY");
console.table(testSuite);
console.log("\n📊 efficiencyComparisons:");
console.dir(efficiencyComparisons, { depth:null });
console.log("✅ All tests completed.");
}
run().catch(err => {
console.error("💥 Test harness crashed:", err);
});
// ...existing code...
// Run all tests
run();