Stable version of machinegroup control

This commit is contained in:
znetsixe
2025-10-02 17:08:41 +02:00
parent a55c6bdbea
commit b4364094c6
3 changed files with 452 additions and 587 deletions

View File

@@ -1,548 +1,288 @@
// ...existing code...
const MachineGroup = require('./specificClass.js');
const Machine = require('../../rotatingMachine/src/specificClass');
const Measurement = require('../../measurement/src/specificClass');
const specs = require('../../generalFunctions/datasets/assetData/curves/hidrostal-H05K-S03R.json');
function createBaseMachineConfig(machineNum, name, specs) {
return {
general: {
logging: { enabled: true, logLevel: "warn" },
name: name,
id: machineNum,
unit: "m3/h"
},
functionality: {
softwareType: "machine",
role: "rotationaldevicecontroller"
},
asset: {
category: "pump",
type: "centrifugal",
model: "hidrostal-h05k-s03r",
supplier: "hydrostal",
machineCurve: specs
},
mode: {
current: "auto",
allowedActions: {
auto: ["execSequence", "execMovement", "statusCheck"],
virtualControl: ["execMovement", "statusCheck"],
fysicalControl: ["statusCheck"]
},
allowedSources: {
auto: ["parent", "GUI"],
virtualControl: ["GUI"],
fysicalControl: ["fysical"]
}
},
sequences: {
startup: ["starting", "warmingup", "operational"],
shutdown: ["stopping", "coolingdown", "idle"],
emergencystop: ["emergencystop", "off"],
boot: ["idle", "starting", "warmingup", "operational"]
}
};
}
function createBaseMachineGroupConfig(name) {
return {
general: {
logging: { enabled: true, logLevel: "debug" },
name: name
},
functionality: {
softwareType: "machinegroup",
role: "groupcontroller"
},
scaling: {
current: "normalized"
},
mode: {
current: "optimalcontrol"
}
};
}
const stateConfig = { time:{starting:0,warmingup:0,stopping:0,coolingdown:0}, movement:{speed:1000,mode:"staticspeed"} };
const ptConfig = {
general: {
logging: { enabled: true, logLevel: "debug" },
name: "testpt",
id: "0",
unit: "mbar",
general:{ logging:{enabled:false,logLevel:"warn"}, name:"testpt", id:"pt-1", unit:"mbar" },
functionality:{ softwareType:"measurement", role:"sensor" },
asset:{ category:"sensor", type:"pressure", model:"testmodel", supplier:"vega", unit:"mbar" },
scaling:{ absMin:0, absMax:4000 }
};
const testSuite = [];
const efficiencyComparisons = [];
function logPass(name, details="") {
const entry = { name, status:"PASS", details };
testSuite.push(entry);
console.log(`${name}${details ? `${details}` : ""}`);
}
function logFail(name, error) {
const entry = { name, status:"FAIL", details:error?.message || error };
testSuite.push(entry);
console.error(`${name}${entry.details}`);
}
function approxEqual(actual, expected, tolerancePct=1) {
const tolerance = (expected * tolerancePct) / 100;
return actual >= expected - tolerance && actual <= expected + tolerance;
}
async function sleep(ms){ return new Promise(resolve => setTimeout(resolve, ms)); }
function createMachineConfig(id,label) {
return {
general:{ logging:{enabled:false,logLevel:"warn"}, name:label, id, unit:"m3/h" },
functionality:{ softwareType:"machine", role:"rotationaldevicecontroller" },
asset:{ category:"pump", type:"centrifugal", model:"hidrostal-h05k-s03r", supplier:"hydrostal", machineCurve:specs },
mode:{
current:"auto",
allowedActions:{
auto:["execSequence","execMovement","flowMovement","statusCheck"],
virtualControl:["execMovement","statusCheck"],
fysicalControl:["statusCheck"]
},
allowedSources:{
auto:["parent","GUI"],
virtualControl:["GUI"],
fysicalControl:["fysical"]
}
},
functionality: {
softwareType: "measurement",
role: "sensor"
},
asset: {
category: "sensor",
type: "pressure",
model: "testmodel",
supplier: "vega"
},
scaling: {
absMin: 0,
absMax: 4000,
sequences:{
startup:["starting","warmingup","operational"],
shutdown:["stopping","coolingdown","idle"],
emergencystop:["emergencystop","off"],
boot:["idle","starting","warmingup","operational"]
}
};
}
const stateConfig = {
time:{starting:0, warmingup:0, stopping:0, coolingdown:0},
movement:{speed:1000, mode:"staticspeed"},
async function bootstrapGroup() {
const groupCfg = {
general:{ logging:{enabled:false,logLevel:"warn"}, name:"testmachinegroup" },
functionality:{ softwareType:"machinegroup", role:"groupcontroller" },
scaling:{ current:"normalized" },
mode:{ current:"optimalcontrol" }
};
const mg = new MachineGroup(groupCfg);
const pt = new Measurement(ptConfig);
for (let idx=1; idx<=2; idx++){
const machine = new Machine(createMachineConfig(String(idx),`machine-${idx}`), stateConfig);
mg.childRegistrationUtils.registerChild(machine,"downstream");
machine.childRegistrationUtils.registerChild(pt,"downstream");
}
pt.calculateInput(1000);
await sleep(10);
return { mg, pt };
}
async function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms));
function captureState(mg,label){
return {
label,
machines: Object.entries(mg.machines).map(([id,machine]) => ({
id,
state: machine.state.getCurrentState(),
position: machine.state.getCurrentPosition(),
predictedFlow: machine.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0,
predictedPower: machine.measurements.type("power").variant("predicted").position("upstream").getCurrentValue() || 0
})),
totals: {
flow: mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0,
power: mg.measurements.type("power").variant("predicted").position("upstream").getCurrentValue() || 0,
efficiency: mg.measurements.type("efficiency").variant("predicted").position("downstream").getCurrentValue() || 0
}
};
}
function logMachineStates(mg, testName) {
console.log(`\n=== ${testName} ===`);
console.log(`scaling: ${mg.scaling}, mode: ${mg.mode}`);
console.log(`flow range: ${mg.dynamicTotals.flow.min.toFixed(2)} - ${mg.dynamicTotals.flow.max.toFixed(2)} m3/h`);
Object.entries(mg.machines).forEach(([id, machine]) => {
const state = machine.state.getCurrentState();
const flow = machine.measurements?.type("flow")?.variant("predicted")?.position("downstream")?.getCurrentValue() || 0;
const power = machine.measurements?.type("power")?.variant("predicted")?.position("upstream")?.getCurrentValue() || 0;
const position = machine.state?.getCurrentPosition();
console.log(`machine ${id}: state=${state}, position=${position.toFixed(2)}, flow=${flow.toFixed(2)}, power=${power.toFixed(2)}`);
});
const totalFlow = mg.measurements?.type("flow")?.variant("predicted")?.position("downstream")?.getCurrentValue() || 0;
const totalPower = mg.measurements?.type("power")?.variant("predicted")?.position("upstream")?.getCurrentValue() || 0;
console.log(`total: flow=${totalFlow.toFixed(2)}, power=${totalPower.toFixed(2)}`);
// ADD THIS RETURN STATEMENT - this is what was missing!
return {
totalFlow,
totalPower,
efficiency: totalPower > 0 ? totalFlow / totalPower : 0
};
}
async function testPriorityVsOptimalEfficiency(mg, pt1) {
const demandIncrement = 1; // Test every 1% for detailed comparison
console.log("\n🔬 PRIORITY vs OPTIMAL CONTROL EFFICIENCY COMPARISON");
console.log("=".repeat(80));
const results = [];
console.log("\n📊 Testing OPTIMAL CONTROL (every 10% for speed)...");
async function testNormalizedScaling(mg,pt){
const label = "Normalized scaling tracks expected flow";
try{
mg.setScaling("normalized");
mg.setMode("optimalcontrol");
// Test every 10% for speed and give machines time to start
for (let demand = 0; demand <= 100; demand += demandIncrement) {
try {
console.log(`\n🔄 Setting optimal demand to ${demand}%`);
await mg.handleInput("parent", demand);
pt1.calculateInput(1400);
const data = logMachineStates(mg, `optimal ${demand}%`);
results.push({
demand,
optimal: {
flow: data.totalFlow,
power: data.totalPower,
efficiency: data.efficiency
}
});
console.log(`✅ optimal ${demand}%: flow=${data.totalFlow.toFixed(2)}, power=${data.totalPower.toFixed(2)}, eff=${data.efficiency.toFixed(4)}`);
} catch (err) {
console.error(`❌ error at optimal ${demand}%:`, err.message);
}
const dynamic = mg.calcDynamicTotals();
const checkpoints = [0,10,25,50,75,100];
for (const demand of checkpoints){
await mg.handleInput("parent", demand);
pt.calculateInput(1400);
await sleep(20);
const totals = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
const expected = dynamic.flow.min + (demand/100)*(dynamic.flow.max - dynamic.flow.min);
if(!approxEqual(totals, expected, 2)){
throw new Error(`Flow ${totals.toFixed(2)} outside expectation ${expected.toFixed(2)} @ ${demand}%`);
}
}
console.log("\n📊 Testing PRIORITY CONTROL (every 10% for speed)...");
mg.setMode("prioritycontrol");
let resultIndex = 0;
for (let demand = 0; demand <= 100; demand += demandIncrement) {
try {
console.log(`\n🔄 Setting priority demand to ${demand}%`);
await mg.handleInput("parent", demand);
pt1.calculateInput(1400);
const data = logMachineStates(mg, `priority ${demand}%`);
// Add priority data to existing result
if (results[resultIndex]) {
results[resultIndex].priority = {
flow: data.totalFlow,
power: data.totalPower,
efficiency: data.efficiency
};
}
console.log(`✅ priority ${demand}%: flow=${data.totalFlow.toFixed(2)}, power=${data.totalPower.toFixed(2)}, eff=${data.efficiency.toFixed(4)}`);
resultIndex++;
} catch (err) {
console.error(`❌ error at priority ${demand}%:`, err.message);
resultIndex++;
}
}
// Generate comparison report
generateEfficiencyReport(results);
logPass(label);
}catch(err){ logFail(label, err); }
}
// Add this report generation function
function generateEfficiencyReport(results) {
console.log("\n" + "=".repeat(100));
console.log("📈 EFFICIENCY COMPARISON REPORT");
console.log("=".repeat(100));
// Filter complete results with actual data
const completeResults = results.filter(r =>
r.optimal && r.priority &&
r.optimal.power > 0 && r.priority.power > 0 &&
r.optimal.flow > 0 && r.priority.flow > 0
);
if (completeResults.length === 0) {
console.log("❌ No complete results with active machines to compare");
console.log("💡 This might indicate machines are not starting properly");
// Show what data we do have
console.log("\n🔍 DEBUGGING DATA:");
results.forEach(r => {
if (r.optimal || r.priority) {
console.log(`${r.demand}%: optimal=${r.optimal?.power || 'missing'}, priority=${r.priority?.power || 'missing'}`);
}
});
return;
}
console.log(`\n📊 Successfully analyzed ${completeResults.length} test points with active machines`);
// Calculate summary statistics
let totalPowerDiff = 0;
let totalEffDiff = 0;
let validComparisons = 0;
console.log("\n📋 DETAILED BREAKDOWN:");
console.log("Demand | Optimal Power | Priority Power | Power Diff | Optimal Eff | Priority Eff | Eff Diff");
console.log("-------|---------------|----------------|------------|-------------|--------------|----------");
completeResults.forEach(r => {
const powerDiff = r.priority.power - r.optimal.power;
const effDiff = r.priority.efficiency - r.optimal.efficiency;
totalPowerDiff += powerDiff;
totalEffDiff += effDiff;
validComparisons++;
console.log(
`${r.demand}% | ${r.optimal.power.toFixed(3).padStart(11)} | ${r.priority.power.toFixed(3).padStart(12)} | ` +
`${powerDiff.toFixed(3).padStart(8)} | ${r.optimal.efficiency.toFixed(4).padStart(9)} | ` +
`${r.priority.efficiency.toFixed(4).padStart(10)} | ${effDiff.toFixed(4).padStart(7)}`
);
});
if (validComparisons > 0) {
const avgPowerDiff = totalPowerDiff / validComparisons;
const avgEffDiff = totalEffDiff / validComparisons;
console.log("\n📊 SUMMARY:");
console.log(`Valid comparisons: ${validComparisons}`);
console.log(`Average power difference: ${avgPowerDiff.toFixed(3)} kW`);
console.log(`Average efficiency difference: ${avgEffDiff.toFixed(4)} m3/h per kW`);
console.log("\n💡 RECOMMENDATION:");
if (avgEffDiff > 0.001) {
console.log(`✅ Priority Control shows ${avgEffDiff.toFixed(4)} better efficiency on average`);
} else if (avgEffDiff < -0.001) {
console.log(`✅ Optimal Control shows ${Math.abs(avgEffDiff).toFixed(4)} better efficiency on average`);
} else {
console.log(`⚖️ Both control methods show similar efficiency`);
}
}
}
async function testNormalizedScaling(mg, pt1) {
console.log("\n🧪 testing normalized scaling (0-100%)...");
mg.setScaling("normalized");
//fetch ranges
const maxflow = mg.dynamicTotals.flow.max;
console.log(`max group flow capacity: ${maxflow.toFixed(2)} m3/h`);
const minFlow = mg.dynamicTotals.flow.min;
console.log(`min group flow capacity: ${minFlow.toFixed(2)} m3/h`);
const testPoints = [0, 10, 25, 50, 75, 90, 100];
const testPressurePoints = [800, 1200, 1600, 2000];
for (const pressure of testPressurePoints) {
try {
console.log(`\n--- testing at ${pressure} mbar ---`);
pt1.calculateInput(pressure);
logMachineStates(mg, `${pressure} mbar, before demand tests`);
for (const demand of testPoints) {
try {
console.log(`\n--- normalized demand: ${demand}% ---`);
await mg.handleInput("parent", demand);
logMachineStates(mg, `normalized ${demand}%`);
//check if total flow is within expected range
const totalFlow = mg.measurements?.type("flow")?.variant("predicted")?.position("downstream")?.getCurrentValue() || 0;
const expectedFlow = minFlow + (demand / 100) * (maxflow - minFlow);
const percentTolerance = 0.1 ; // % tolerance of expected flow
const tolerance = (expectedFlow * percentTolerance) / 100;
if (totalFlow < expectedFlow - tolerance || totalFlow > expectedFlow + tolerance) {
console.warn(`⚠️ Total flow (${totalFlow.toFixed(2)} m3/h) is outside expected range (${(expectedFlow - tolerance).toFixed(2)} - ${(expectedFlow + tolerance).toFixed(2)} m3/h)`);
}
else {
console.log( `Difference between expected and actual flow: ${(totalFlow - expectedFlow).toFixed(2)} m3/h`);
console.log(`✅ Total flow (${totalFlow.toFixed(2)} m3/h) is within expected range (${(expectedFlow - tolerance).toFixed(2)} - ${(expectedFlow + tolerance).toFixed(2)} m3/h)`);
}
} catch (err) {
console.error(`❌ error at ${demand}%:`, err.message);
}
}
} catch (err) {
console.error(`❌ error setting pressure to ${pressure}:`, err.message);
}
}
}
async function testAbsoluteScaling(mg, pt1) {
console.log("\n🧪 testing absolute scaling...");
async function testAbsoluteScaling(mg,pt){
const label = "Absolute scaling accepts direct flow targets";
try{
mg.setScaling("absolute");
mg.setMode("optimalcontrol");
const absMin = mg.dynamicTotals.flow.min;
const absMax = mg.dynamicTotals.flow.max;
const testPoints = [
absMin,
absMin + 20,
(absMin + absMax) / 2,
absMax - 20,
absMax
];
for (const demand of testPoints) {
try {
console.log(`\n--- absolute demand: ${demand.toFixed(2)} m3/h ---`);
await mg.handleInput("parent", demand);
pt1.calculateInput(1400);
logMachineStates(mg, `absolute ${demand.toFixed(2)} m3/h`);
} catch (err) {
console.error(`❌ error at ${demand.toFixed(2)}:`, err.message);
}
const demandPoints = [absMin, absMin+20, (absMin+absMax)/2, absMax-20];
for(const setpoint of demandPoints){
await mg.handleInput("parent", setpoint);
pt.calculateInput(1400);
await sleep(20);
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
if(!approxEqual(flow, setpoint, 2)){
throw new Error(`Flow ${flow.toFixed(2)} != demand ${setpoint.toFixed(2)}`);
}
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function testControlModes(mg, pt1) {
console.log("\n🧪 testing different control modes...");
const modes = ["optimalcontrol", "prioritycontrol", "prioritypercentagecontrol"];
const testDemand = 50; // 50% demand
async function testModeTransitions(mg,pt){
const label = "Mode transitions keep machines responsive";
try{
const modes = ["optimalcontrol","prioritycontrol","prioritypercentagecontrol"];
mg.setScaling("normalized");
for (const mode of modes) {
try {
console.log(`\n--- testing ${mode} ---`);
mg.setMode(mode);
await mg.handleInput("parent", testDemand);
pt1.calculateInput(1400);
logMachineStates(mg, `${mode} at ${testDemand}%`);
} catch (err) {
console.error(`❌ error testing mode ${mode}:`, err.message);
}
for(const mode of modes){
mg.setMode(mode);
await mg.handleInput("parent", 50);
pt.calculateInput(1300);
await sleep(20);
const snapshot = captureState(mg, mode);
const active = snapshot.machines.filter(m => m.state !== "idle");
if(active.length === 0){
throw new Error(`No active machines after switching to ${mode}`);
}
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function testRampUpDown(mg, pt1) {
console.log("\n🧪 testing ramp up and down...");
mg.setScaling("normalized");
async function testRampBehaviour(mg,pt){
const label = "Ramp up/down keeps monotonic flow";
try{
mg.setMode("optimalcontrol");
// Ramp up
console.log("\n--- ramp up test ---");
for (let demand = 0; demand <= 100; demand += 20) {
try {
console.log(`ramping up to ${demand}%`);
await mg.handleInput("parent", demand);
pt1.calculateInput(1400);
if (demand % 40 === 0) { // Log every other step
logMachineStates(mg, `ramp up ${demand}%`);
}
} catch (err) {
console.error(`❌ error ramping up to ${demand}%:`, err.message);
}
mg.setScaling("normalized");
const upDemands = [0,20,40,60,80,100];
let lastFlow = 0;
for(const demand of upDemands){
await mg.handleInput("parent", demand);
pt.calculateInput(1500);
await sleep(15);
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
if(flow < lastFlow - 1){
throw new Error(`Flow decreased during ramp up: ${flow.toFixed(2)} < ${lastFlow.toFixed(2)}`);
}
lastFlow = flow;
}
// Ramp down
console.log("\n--- ramp down test ---");
for (let demand = 100; demand >= 0; demand -= 20) {
try {
console.log(`ramping down to ${demand}%`);
await mg.handleInput("parent", demand);
pt1.calculateInput(1400);
if (demand % 40 === 0) { // Log every other step
logMachineStates(mg, `ramp down ${demand}%`);
}
} catch (err) {
console.error(`❌ error ramping down to ${demand}%:`, err.message);
}
const downDemands = [100,80,60,40,20,0];
lastFlow = Infinity;
for(const demand of downDemands){
await mg.handleInput("parent", demand);
pt.calculateInput(1200);
await sleep(15);
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
if(flow > lastFlow + 1){
throw new Error(`Flow increased during ramp down: ${flow.toFixed(2)} > ${lastFlow.toFixed(2)}`);
}
lastFlow = flow;
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function testPressureResponse(mg, pt1) {
console.log("\n🧪 testing pressure response...");
mg.setScaling("normalized");
async function testPressureAdaptation(mg,pt){
const label = "Pressure changes update predictions";
try{
mg.setMode("optimalcontrol");
const pressures = [800, 1200, 1600, 2000];
const demand = 50;
mg.setScaling("normalized");
const pressures = [800,1200,1600,2000];
let previousFlow = null;
for(const p of pressures){
pt.calculateInput(p);
await mg.handleInput("parent", 50);
await sleep(20);
const flow = mg.measurements.type("flow").variant("predicted").position("downstream").getCurrentValue() || 0;
if(previousFlow !== null && Math.abs(flow - previousFlow) < 0.5){
throw new Error(`Flow did not react to pressure shift (${previousFlow.toFixed(2)} -> ${flow.toFixed(2)})`);
}
previousFlow = flow;
}
logPass(label);
}catch(err){ logFail(label, err); }
}
async function comparePriorityVsOptimal(mg, pt){
const label = "Priority vs Optimal efficiency comparison";
try{
mg.setScaling("normalized");
const pressures = [800, 1100, 1400, 1700];
const demands = [...Array(21)].map((_, idx) => idx * 5);
for (const pressure of pressures) {
try {
console.log(`\n--- testing at ${pressure} mbar ---`);
pt1.calculateInput(pressure);
await mg.handleInput("parent", demand);
pt.calculateInput(pressure);
await sleep(15);
logMachineStates(mg, `${pressure} mbar, ${demand}%`);
} catch (err) {
console.error(`❌ error at pressure ${pressure}:`, err.message);
}
for (const demand of demands) {
mg.setMode("optimalcontrol");
await mg.handleInput("parent", demand);
pt.calculateInput(pressure);
await sleep(20);
const optimalTotals = captureState(mg, `optimal-${pressure}-${demand}`).totals;
mg.setMode("prioritycontrol");
await mg.handleInput("parent", demand);
pt.calculateInput(pressure);
await sleep(20);
const priorityTotals = captureState(mg, `priority-${pressure}-${demand}`).totals;
efficiencyComparisons.push({
pressure,
demandPercent: demand,
optimalFlow: Number(optimalTotals.flow.toFixed(3)),
optimalPower: Number(optimalTotals.power.toFixed(3)),
optimalEfficiency: Number((optimalTotals.efficiency || 0).toFixed(4)),
priorityFlow: Number(priorityTotals.flow.toFixed(3)),
priorityPower: Number(priorityTotals.power.toFixed(3)),
priorityEfficiency: Number((priorityTotals.efficiency || 0).toFixed(4)),
efficiencyDelta: Number(((priorityTotals.efficiency || 0) - (optimalTotals.efficiency || 0)).toFixed(4)),
powerDelta: Number((priorityTotals.power - optimalTotals.power).toFixed(3))
});
}
}
logPass(label, "efficiencyComparisons array populated");
} catch (err) {
logFail(label, err);
}
}
async function testEdgeCases(mg, pt1) {
console.log("\n🧪 testing edge cases...");
mg.setScaling("normalized");
mg.setMode("optimalcontrol");
const edgeCases = [
{ demand: -10, name: "negative demand" },
{ demand: 0, name: "zero demand" },
{ demand: 0.5, name: "fractional demand" },
{ demand: 110, name: "over 100%" },
{ demand: 999, name: "extreme demand" }
];
for (const testCase of edgeCases) {
try {
console.log(`\n--- testing ${testCase.name}: ${testCase.demand} ---`);
await mg.handleInput("parent", testCase.demand);
pt1.calculateInput(1400);
logMachineStates(mg, testCase.name);
} catch (err) {
console.error(`❌ error testing ${testCase.name}:`, err.message);
}
}
async function run(){
console.log("🚀 Starting machine-group integration tests...");
const { mg, pt } = await bootstrapGroup();
await testNormalizedScaling(mg, pt);
await testAbsoluteScaling(mg, pt);
await testModeTransitions(mg, pt);
await testRampBehaviour(mg, pt);
await testPressureAdaptation(mg, pt);
await comparePriorityVsOptimal(mg, pt);
console.log("\n📋 TEST SUMMARY");
console.table(testSuite);
console.log("\n📊 efficiencyComparisons:");
console.dir(efficiencyComparisons, { depth:null });
console.log("✅ All tests completed.");
}
async function testPerformanceMetrics(mg, pt1) {
console.log("\n🧪 testing performance metrics...");
mg.setScaling("normalized");
mg.setMode("optimalcontrol");
const demands = [25, 50, 75];
const results = [];
for (const demand of demands) {
try {
const startTime = Date.now();
await mg.handleInput("parent", demand);
pt1.calculateInput(1400);
const endTime = Date.now();
const totalFlow = mg.measurements?.type("flow")?.variant("predicted")?.position("downstream")?.getCurrentValue() || 0;
const totalPower = mg.measurements?.type("power")?.variant("predicted")?.position("upstream")?.getCurrentValue() || 0;
const efficiency = totalFlow > 0 ? (totalFlow / totalPower).toFixed(3) : 0;
results.push({
demand,
flow: totalFlow.toFixed(2),
power: totalPower.toFixed(2),
efficiency,
responseTime: endTime - startTime
});
} catch (err) {
console.error(`❌ error testing performance at ${demand}%:`, err.message);
}
}
console.log("\n=== performance summary ===");
console.log("demand | flow | power | efficiency | response(ms)");
console.log("-------|--------|--------|-----------|---------");
results.forEach(r => {
console.log(`${r.demand}% | ${r.flow} | ${r.power} | ${r.efficiency} | ${r.responseTime}`);
});
}
async function runAllTests() {
console.log("🚀 starting comprehensive machinegroup tests...\n");
try {
// Setup
const machineGroupConfig = createBaseMachineGroupConfig("testmachinegroup");
const machineConfigs = {};
machineConfigs[1] = createBaseMachineConfig(1, "testmachine1", specs);
machineConfigs[2] = createBaseMachineConfig(2, "testmachine2", specs);
const mg = new MachineGroup(machineGroupConfig);
const pt1 = new Measurement(ptConfig);
const numofMachines = 2;
// Register machines
for (let i = 1; i <= numofMachines; i++) {
const machine = new Machine(machineConfigs[i],stateConfig);
mg.childRegistrationUtils.registerChild(machine, "downstream");
}
mg.machines[1].childRegistrationUtils.registerChild(pt1, "downstream");
mg.machines[2].childRegistrationUtils.registerChild(pt1, "downstream");
console.log(`✅ setup complete: ${Object.keys(mg.machines).length} machines registered`);
console.log(`flow range: ${mg.dynamicTotals.flow.min.toFixed(2)} - ${mg.dynamicTotals.flow.max.toFixed(2)} m3/h\n`);
// Run test suites
//await testPriorityVsOptimalEfficiency(mg, pt1);
await testNormalizedScaling(mg, pt1);
await testAbsoluteScaling(mg, pt1);
await testControlModes(mg, pt1);
await testRampUpDown(mg, pt1);
await testPressureResponse(mg, pt1);
await testEdgeCases(mg, pt1);
await testPerformanceMetrics(mg, pt1);
console.log("\n🎉 all tests completed successfully!");
} catch (err) {
console.error("💥 test suite failed:", err.message);
console.error("stack trace:", err.stack);
}
}
run().catch(err => {
console.error("💥 Test harness crashed:", err);
});
// ...existing code...
// Run all tests
runAllTests();
run();