dev-Rene added features #5

Merged
renederen merged 5 commits from dev-Rene into main 2025-10-16 13:20:04 +00:00
24 changed files with 2933 additions and 29 deletions

View File

@@ -13,6 +13,7 @@ const logger = require('./src/helper/logger.js');
const validation = require('./src/helper/validationUtils.js'); const validation = require('./src/helper/validationUtils.js');
const configUtils = require('./src/helper/configUtils.js'); const configUtils = require('./src/helper/configUtils.js');
const assertions = require('./src/helper/assertionUtils.js') const assertions = require('./src/helper/assertionUtils.js')
const coolprop = require('./src/coolprop-node/src/index.js');
// Domain-specific modules // Domain-specific modules
const { MeasurementContainer } = require('./src/measurements/index.js'); const { MeasurementContainer } = require('./src/measurements/index.js');
@@ -39,6 +40,7 @@ module.exports = {
MeasurementContainer, MeasurementContainer,
nrmse, nrmse,
state, state,
coolprop,
convert, convert,
MenuManager, MenuManager,
childRegistrationUtils, childRegistrationUtils,

View File

@@ -0,0 +1,694 @@
{
"general": {
"name": {
"default": "Pumping Station",
"rules": {
"type": "string",
"description": "A human-readable name or label for this pumping station configuration."
}
},
"id": {
"default": null,
"rules": {
"type": "string",
"nullable": true,
"description": "A unique identifier for this pumping station configuration. If not provided, defaults to null."
}
},
"unit": {
"default": "m3/h",
"rules": {
"type": "string",
"description": "The default flow unit used for reporting station throughput."
}
},
"logging": {
"logLevel": {
"default": "info",
"rules": {
"type": "enum",
"values": [
{
"value": "debug",
"description": "Log verbose diagnostic messages that aid in troubleshooting the station."
},
{
"value": "info",
"description": "Log general informational messages about station behavior."
},
{
"value": "warn",
"description": "Log warnings when station behavior deviates from expected ranges."
},
{
"value": "error",
"description": "Log only error level messages for critical failures."
}
],
"description": "Defines the minimum severity that will be written to the log."
}
},
"enabled": {
"default": true,
"rules": {
"type": "boolean",
"description": "If true, logging is active for the pumping station node."
}
}
}
},
"functionality": {
"softwareType": {
"default": "pumpingStation",
"rules": {
"type": "string",
"description": "Specified software type used to locate the proper default configuration."
}
},
"role": {
"default": "StationController",
"rules": {
"type": "string",
"description": "Describes the station's function within the EVOLV ecosystem."
}
},
"positionVsParent": {
"default": "atEquipment",
"rules": {
"type": "enum",
"description": "Defines how the station is positioned relative to its parent process or site.",
"values": [
{
"value": "atEquipment",
"description": "The station is controlled at the equipment level and represents the primary pumping asset."
},
{
"value": "upstream",
"description": "The station governs flows entering upstream of the parent asset."
},
{
"value": "downstream",
"description": "The station influences conditions downstream of the parent asset, such as discharge or transfer."
}
]
}
},
"tickIntervalMs": {
"default": 1000,
"rules": {
"type": "number",
"min": 100,
"description": "Interval in milliseconds between internal evaluation cycles and output refreshes."
}
},
"supportsSimulation": {
"default": true,
"rules": {
"type": "boolean",
"description": "Indicates whether the station can operate using simulated inflow and level data."
}
},
"supportedChildSoftwareTypes": {
"default": [
"measurement"
],
"rules": {
"type": "set",
"itemType": "string",
"description": "List of child node software types that may register with the station."
}
}
},
"asset": {
"uuid": {
"default": null,
"rules": {
"type": "string",
"nullable": true,
"description": "Asset tag number which is a universally unique identifier for this pumping station."
}
},
"tagCode": {
"default": null,
"rules": {
"type": "string",
"nullable": true,
"description": "Asset tag code which uniquely identifies the pumping station. May be null if not assigned."
}
},
"category": {
"default": "station",
"rules": {
"type": "enum",
"values": [
{
"value": "station",
"description": "Represents a dedicated pumping station asset."
}
],
"description": "High level classification for asset reporting."
}
},
"type": {
"default": "pumpingStation",
"rules": {
"type": "string",
"description": "Specific asset type used to identify this configuration."
}
},
"model": {
"default": "Unknown",
"rules": {
"type": "string",
"description": "Manufacturer or integrator model designation for the station."
}
},
"supplier": {
"default": "Unknown",
"rules": {
"type": "string",
"description": "Primary supplier or maintainer responsible for the station."
}
},
"geoLocation": {
"default": {
"x": 0,
"y": 0,
"z": 0
},
"rules": {
"type": "object",
"description": "Coordinate reference for locating the pumping station.",
"schema": {
"x": {
"default": 0,
"rules": {
"type": "number",
"description": "X coordinate in meters or site units."
}
},
"y": {
"default": 0,
"rules": {
"type": "number",
"description": "Y coordinate in meters or site units."
}
},
"z": {
"default": 0,
"rules": {
"type": "number",
"description": "Z coordinate in meters or site units."
}
}
}
}
}
},
"basin": {
"volume": {
"default": "1",
"rules": {
"type": "number",
"description": "Total volume of empty basin in m3"
}
},
"height": {
"default": "1",
"rules": {
"type": "number",
"description": "Total height of basin in m"
}
},
"levelUnit": {
"default": "m",
"rules": {
"type": "string",
"description": "Unit used for level related setpoints and thresholds."
}
},
"heightInlet": {
"default": 2,
"rules": {
"type": "number",
"min": 0,
"description": "Height of the inlet pipe measured from the basin floor (m)."
}
},
"heightOutlet": {
"default": 0.2,
"rules": {
"type": "number",
"min": 0,
"description": "Height of the outlet pipe measured from the basin floor (m)."
}
},
"heightOverflow": {
"default": 2.5,
"rules": {
"type": "number",
"min": 0,
"description": "Height of the overflow point measured from the basin floor (m)."
}
},
"inletPipeDiameter": {
"default": 0.4,
"rules": {
"type": "number",
"min": 0,
"description": "Nominal inlet pipe diameter (m)."
}
},
"outletPipeDiameter": {
"default": 0.4,
"rules": {
"type": "number",
"min": 0,
"description": "Nominal outlet pipe diameter (m)."
}
}
},
"hydraulics": {
"maxInflowRate": {
"default": 200,
"rules": {
"type": "number",
"min": 0,
"description": "Maximum expected inflow during peak events (m3/h)."
}
},
"refHeight": {
"default": "NAP",
"rules": {
"type": "enum",
"values": [
{
"value": "NAP",
"description": "NAP (Normaal Amsterdams Peil)"
},
{
"value": "EVRF",
"description": "EVRF (European Vertical Reference Frame)"
},
{
"value": "EGM2008",
"description": "EGM2008 / EGM96 (satellietmetingen) Geopotentieel model earth "
}
],
"description": "Reference height to use to identify the height vs other basins with. This will say something more about the expected pressure loss in m head"
}
},
"staticHead": {
"default": 12,
"rules": {
"type": "number",
"min": 0,
"description": "Static head between station suction and discharge point (m)."
}
},
"maxDischargeHead": {
"default": 24,
"rules": {
"type": "number",
"min": 0,
"description": "Maximum allowable discharge head before calling for alarms (m)."
}
},
"pipelineLength": {
"default": 80,
"rules": {
"type": "number",
"min": 0,
"description": "Length of the discharge pipeline considered in calculations (m)."
}
},
"defaultFluid": {
"default": "wastewater",
"rules": {
"type": "enum",
"values": [
{
"value": "wastewater",
"description": "The wet well is primarily cylindrical."
},
{
"value": "water",
"description": "The wet well is rectangular or box shaped."
}
]
}
},
"temperatureReferenceDegC": {
"default": 15,
"rules": {
"type": "number",
"description": "Reference fluid temperature for property lookups (degC)."
}
}
},
"control": {
"controlStrategy": {
"default": "levelBased",
"rules": {
"type": "enum",
"values": [
{
"value": "levelBased",
"description": "Lead and lag pumps are controlled by basin level thresholds."
},
{
"value": "pressureBased",
"description": "Pumps target a discharge pressure setpoint."
},
{
"value": "flowTracking",
"description": "Pumps modulate to match measured inflow or downstream demand."
},
{
"value": "manual",
"description": "Pumps are operated manually or by an external controller."
}
],
"description": "Primary control philosophy for pump actuation."
}
},
"levelSetpoints": {
"default": {
"startLeadPump": 1.2,
"stopLeadPump": 0.8,
"startLagPump": 1.8,
"stopLagPump": 1.4,
"alarmHigh": 2.3,
"alarmLow": 0.3
},
"rules": {
"type": "object",
"description": "Level thresholds that govern pump staging and alarms (m).",
"schema": {
"startLeadPump": {
"default": 1.2,
"rules": {
"type": "number",
"description": "Level that starts the lead pump."
}
},
"stopLeadPump": {
"default": 0.8,
"rules": {
"type": "number",
"description": "Level that stops the lead pump."
}
},
"startLagPump": {
"default": 1.8,
"rules": {
"type": "number",
"description": "Level that starts the lag pump."
}
},
"stopLagPump": {
"default": 1.4,
"rules": {
"type": "number",
"description": "Level that stops the lag pump."
}
},
"alarmHigh": {
"default": 2.3,
"rules": {
"type": "number",
"description": "High level alarm threshold."
}
},
"alarmLow": {
"default": 0.3,
"rules": {
"type": "number",
"description": "Low level alarm threshold."
}
}
}
}
},
"pressureSetpoint": {
"default": 250,
"rules": {
"type": "number",
"min": 0,
"description": "Target discharge pressure when operating in pressure control (kPa)."
}
},
"alarmDebounceSeconds": {
"default": 10,
"rules": {
"type": "number",
"min": 0,
"description": "Time a condition must persist before raising an alarm (seconds)."
}
},
"equalizationTargetPercent": {
"default": 60,
"rules": {
"type": "number",
"min": 0,
"max": 100,
"description": "Target fill percentage of the basin when operating in equalization mode."
}
},
"autoRestartAfterPowerLoss": {
"default": true,
"rules": {
"type": "boolean",
"description": "If true, pumps resume based on last known state after power restoration."
}
},
"manualOverrideTimeoutMinutes": {
"default": 30,
"rules": {
"type": "number",
"min": 0,
"description": "Duration after which a manual override expires automatically (minutes)."
}
},
"flowBalanceTolerance": {
"default": 5,
"rules": {
"type": "number",
"min": 0,
"description": "Allowable error between inflow and outflow before adjustments are triggered (m3/h)."
}
}
},
"alarms": {
"default": {
"highLevel": {
"enabled": true,
"threshold": 2.3,
"delaySeconds": 30,
"severity": "critical",
"acknowledgmentRequired": true
},
"lowLevel": {
"enabled": true,
"threshold": 0.2,
"delaySeconds": 15,
"severity": "warning",
"acknowledgmentRequired": false
}
},
"rules": {
"type": "object",
"description": "Alarm configuration for the pumping station.",
"schema": {
"highLevel": {
"default": {
"enabled": true,
"threshold": 2.3,
"delaySeconds": 30,
"severity": "critical",
"acknowledgmentRequired": true
},
"rules": {
"type": "object",
"schema": {
"enabled": {
"default": true,
"rules": {
"type": "boolean",
"description": "Enable or disable the high level alarm."
}
},
"threshold": {
"default": 2.3,
"rules": {
"type": "number",
"description": "Level threshold that triggers the high level alarm (m)."
}
},
"delaySeconds": {
"default": 30,
"rules": {
"type": "number",
"min": 0,
"description": "Delay before issuing the high level alarm (seconds)."
}
},
"severity": {
"default": "critical",
"rules": {
"type": "enum",
"values": [
{
"value": "info",
"description": "Informational notification."
},
{
"value": "warning",
"description": "Warning condition requiring attention."
},
{
"value": "critical",
"description": "Critical alarm requiring immediate intervention."
}
],
"description": "Severity associated with the high level alarm."
}
},
"acknowledgmentRequired": {
"default": true,
"rules": {
"type": "boolean",
"description": "If true, this alarm must be acknowledged by an operator."
}
}
}
}
},
"lowLevel": {
"default": {
"enabled": true,
"threshold": 0.2,
"delaySeconds": 15,
"severity": "warning",
"acknowledgmentRequired": false
},
"rules": {
"type": "object",
"schema": {
"enabled": {
"default": true,
"rules": {
"type": "boolean",
"description": "Enable or disable the low level alarm."
}
},
"threshold": {
"default": 0.2,
"rules": {
"type": "number",
"description": "Level threshold that triggers the low level alarm (m)."
}
},
"delaySeconds": {
"default": 15,
"rules": {
"type": "number",
"min": 0,
"description": "Delay before issuing the low level alarm (seconds)."
}
},
"severity": {
"default": "warning",
"rules": {
"type": "enum",
"values": [
{
"value": "info",
"description": "Informational notification."
},
{
"value": "warning",
"description": "Warning condition requiring attention."
},
{
"value": "critical",
"description": "Critical alarm requiring immediate intervention."
}
],
"description": "Severity associated with the low level alarm."
}
},
"acknowledgmentRequired": {
"default": false,
"rules": {
"type": "boolean",
"description": "If true, this alarm must be acknowledged by an operator."
}
}
}
}
}
}
}
},
"simulation": {
"enabled": {
"default": false,
"rules": {
"type": "boolean",
"description": "If true, the station operates in simulation mode using generated inflow and level data."
}
},
"mode": {
"default": "diurnal",
"rules": {
"type": "enum",
"values": [
{
"value": "static",
"description": "Use constant inflow and level conditions."
},
{
"value": "diurnal",
"description": "Use a typical diurnal inflow curve to drive simulation."
},
{
"value": "storm",
"description": "Use an elevated inflow profile representing a storm event."
}
],
"description": "Defines which synthetic profile drives the simulation."
}
},
"seed": {
"default": 42,
"rules": {
"type": "number",
"description": "Seed used for pseudo-random components in simulation."
}
},
"applyRandomNoise": {
"default": true,
"rules": {
"type": "boolean",
"description": "If true, adds small noise to simulated measurements."
}
},
"inflowProfile": {
"default": [
80,
110,
160,
120,
90
],
"rules": {
"type": "array",
"itemType": "number",
"minLength": 1,
"description": "Relative inflow profile used when mode is set to diurnal or storm (percentage of design inflow)."
}
}
}
}

2
src/coolprop-node/.gitattributes vendored Normal file
View File

@@ -0,0 +1,2 @@
# Auto detect text files and perform LF normalization
* text=auto

21
src/coolprop-node/LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2024 Craig Zych
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

253
src/coolprop-node/README.md Normal file
View File

@@ -0,0 +1,253 @@
# CoolProp-Node
A Node.js wrapper for CoolProp providing an easy-to-use interface for thermodynamic calculations and refrigerant properties. Unlike all the other CoolProp npm packages I've seen, this one should actually work. Please report any issues.
## Installation
```bash
npm install coolprop-node
```
## Features
- Easy-to-use async interface for CoolProp
- Unit conversion support (Temperature: K/C/F, Pressure: Pa/kPa/bar/psi)
- Automatic initialization
- Configurable defaults
- Comprehensive error handling
## Dependencies
No External Dependencies, as CoolProp.js and CoolProp.wasm are bundled with the package.
- [CoolProp](https://github.com/CoolProp/CoolProp) for the powerful thermodynamic library
## Quick Start
```javascript
const nodeprop = require('coolprop-node');
async function example() {
// Initialize with defaults (optional)
await nodeprop.init({
refrigerant: 'R404A',
tempUnit: 'C',
pressureUnit: 'bar'
});
// Calculate superheat
const result = await nodeprop.calculateSuperheat({
temperature: 25, // 25°C
pressure: 10, // 10 bar
refrigerant: 'R404A' // optional if set in init
});
console.log(result);
// expected output:
{
type: 'success',
superheat: 5.2,
saturationTemperature: 19.8,
refrigerant: 'R404A',
units: {
temperature: 'C',
pressure: 'bar'
}
}
}
example();
```
## API Reference
### nodeprop.init(config)
Initializes the wrapper with optional configuration.
###### Note: Calling `init()` is optional. The library will initialize automatically when you make your first call to any function, but you must provide a `refrigerant` parameter in that first call.
```javascript
await nodeprop.init({
refrigerant: 'R404A', // Required on first init
tempUnit: 'C', // Optional, defaults to 'K'
pressureUnit: 'bar' // Optional, defaults to 'Pa'
});
```
### nodeprop.calculateSuperheat(input)
Calculates superheat for a given refrigerant.
```javascript
const result = await nodeprop.calculateSuperheat({
temperature: 25, // 25°C
pressure: 10, // 10 bar
refrigerant: 'R404A' // optional if set in init
});
returns:
{
type: 'success',
superheat: 5.2,
saturationTemperature: 19.8,
refrigerant: 'R404A',
units: {
temperature: 'C',
pressure: 'bar'
}
}
```
### nodeprop.getSaturationTemperature(input)
Calculates saturation temperature for a given refrigerant.
```javascript
const result = await nodeprop.calculateSaturationTemperature({
temperature: 25, // 25°C
pressure: 10, // 10 bar
refrigerant: 'R404A' // optional if set in init
});
returns:
{
type: 'success',
temperature: 19.8,
refrigerant: 'R404A',
units: {
temperature: 'C',
pressure: 'bar'
}
}
```
### nodeprop.getSaturationPressure(input)
Calculates saturation pressure for a given refrigerant.
```javascript
const result = await nodeprop.calculateSaturationPressure({
temperature: 25, // 25°C
refrigerant: 'R404A' // optional if set in init
});
returns:
{
type: 'success',
pressure: 10,
refrigerant: 'R404A',
units: {
temperature: 'C',
pressure: 'bar'
}
}
```
### nodeprop.calculateSubcooling(input)
Calculates subcooling for a given refrigerant.
```javascript
const result = await nodeprop.calculateSubcooling({
temperature: 25, // 25°C
pressure: 10, // 10 bar
refrigerant: 'R404A' // optional if set in init
});
returns:
{
type: 'success',
subcooling: 5.2,
saturationTemperature: 19.8,
refrigerant: 'R404A',
units: {
temperature: 'C',
pressure: 'bar'
}
}
```
### nodeprop.calculateSuperheat(input)
Calculates superheat for a given refrigerant.
```javascript
const result = await nodeprop.calculateSuperheat({
temperature: 25, // 25°C
pressure: 10, // 10 bar
refrigerant: 'R404A' // optional if set in init
});
returns:
{
type: 'success',
superheat: 5.2,
saturationTemperature: 19.8,
refrigerant: 'R404A',
units: {
temperature: 'C',
pressure: 'bar'
}
}
```
### nodeprop.getProperties(input)
Gets all properties for a given refrigerant.
```javascript
const result = await nodeprop.getProperties({
temperature: 25, // 25°C
pressure: 10, // 10 bar
refrigerant: 'R404A' // optional if set in init
});
returns:
{
type: 'success',
properties: {
temperature: 25, // in configured temperature unit (e.g., °C)
pressure: 10, // in configured pressure unit (e.g., bar)
density: 1234.56, // in kg/m³
enthalpy: 400000, // in J/kg
entropy: 1750, // in J/kg/K
quality: 1, // dimensionless (0-1)
conductivity: 0.013, // in W/m/K
viscosity: 1.2e-5, // in Pa·s
specificHeat: 850 // in J/kg/K
},
refrigerant: 'R404A',
units: {
temperature: 'C',
pressure: 'bar',
density: 'kg/m³',
enthalpy: 'J/kg',
entropy: 'J/kg/K',
quality: 'dimensionless',
conductivity: 'W/m/K',
viscosity: 'Pa·s',
specificHeat: 'J/kg/K'
}
}
```
### nodeprop.PropsSI
Direct access to CoolProp's PropsSI function.
```javascript
const PropsSI = await nodeprop.getPropsSI();
const result = PropsSI('H', 'T', 298.15, 'P', 101325, 'R134a');
```
### Error Handling
```javascript
const result = await nodeprop.calculateSuperheat({
temperature: 25, // 25°C
pressure: 10, // 10 bar
refrigerant: 'R404' // Invalid refrigerant. Must be supported by CoolProp, but R404 is not even a valid refrigerant.
});
returns:
{
type: 'error',
message: 'Invalid refrigerant'
}
```
### Acknowledgements
- [CoolProp](https://github.com/CoolProp/CoolProp) for the powerful thermodynamic library

View File

@@ -0,0 +1,80 @@
const coolprop = require('./src/index.js');
// Function to generate random number between min and max
function getRandomNumber(min, max) {
return min + Math.random() * (max - min);
}
// Generate 1000 combinations of temperature and pressure
function generateCombinations(count) {
const combinations = [];
// For R744 (CO2), using realistic ranges from test files
// Temperature range: -40°F to 32°F
// Pressure range: 131 psig to 491 psig
for (let i = 0; i < count; i++) {
const temperature = getRandomNumber(-40, 32);
const pressure = getRandomNumber(131, 491);
combinations.push({
temperature,
pressure,
refrigerant: 'R744',
tempUnit: 'F',
pressureUnit: 'psig'
});
}
return combinations;
}
async function runBenchmark() {
console.log('Generating 1000 temperature and pressure combinations...');
const combinations = generateCombinations(1000);
console.log('Combinations generated.');
// Pre-initialize the library
console.log('Initializing library...');
await coolprop.init({
refrigerant: 'R744',
tempUnit: 'F',
pressureUnit: 'psig'
});
console.log('Library initialized.');
// Run benchmark
console.log('Starting benchmark...');
const startTime = performance.now();
const results = [];
for (let i = 0; i < combinations.length; i++) {
const result = await coolprop.calculateSuperheat(combinations[i]);
results.push(result);
// Show progress every 100 calculations
if ((i + 1) % 100 === 0) {
console.log(`Processed ${i + 1} / ${combinations.length} calculations`);
}
}
const endTime = performance.now();
const totalTime = endTime - startTime;
const avgTime = totalTime / combinations.length;
// Report results
console.log('\nBenchmark Results:');
console.log(`Total time: ${totalTime.toFixed(2)} ms`);
console.log(`Average time per calculation: ${avgTime.toFixed(2)} ms`);
console.log(`Calculations per second: ${(1000 / avgTime).toFixed(2)}`);
// Count success and error results
const successful = results.filter(r => r.type === 'success').length;
const failed = results.filter(r => r.type === 'error').length;
console.log(`\nSuccessful calculations: ${successful}`);
console.log(`Failed calculations: ${failed}`);
}
// Run the benchmark
runBenchmark().catch(error => {
console.error('Benchmark failed:', error);
});

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -0,0 +1,31 @@
{
"name": "coolprop-node",
"version": "1.0.20",
"main": "src/index.js",
"scripts": {
"test": "jest",
"test:watch": "jest --watch"
},
"keywords": [
"coolprop",
"thermodynamics",
"fluid properties",
"refrigerant",
"refrigeration",
"refprop"
],
"author": "Craig Zych",
"license": "MIT",
"description": "A Node.js wrapper for CoolProp providing an easy-to-use interface for thermodynamic calculations and refrigerant properties. Unlike all the other CoolProp npm packages I've seen, this one should actually work. Please report any issues. ",
"devDependencies": {
"jest": "^29.7.0"
},
"jest": {
"testEnvironment": "node",
"verbose": true
},
"repository": {
"type": "git",
"url": "https://github.com/Craigzyc/coolprop-node.git"
}
}

View File

@@ -0,0 +1,92 @@
// Load and configure the CoolProp module
const fs = require('fs');
const path = require('path');
const vm = require('vm');
// Mock XMLHttpRequest
class XMLHttpRequest {
open(method, url) {
this.method = method;
this.url = url;
}
send() {
try {
// Convert the URL to a local file path
const localPath = path.join(__dirname, '..', 'coolprop', path.basename(this.url));
const data = fs.readFileSync(localPath);
this.status = 200;
this.response = data;
this.responseType = 'arraybuffer';
if (this.onload) {
this.onload();
}
} catch (error) {
if (this.onerror) {
this.onerror(error);
}
}
}
}
// Read the coolprop.js file
const coolpropJs = fs.readFileSync(path.join(__dirname, '../coolprop/coolprop.js'), 'utf8');
// Create a context for the module
const context = {
window: {},
self: {},
Module: {
onRuntimeInitialized: function() {
context.Module.initialized = true;
}
},
importScripts: () => {},
console: console,
location: {
href: 'file://' + __dirname,
pathname: __dirname,
},
document: {
currentScript: { src: '' }
},
XMLHttpRequest: XMLHttpRequest
};
// Make self reference the context itself
context.self = context;
// Make window reference the context itself
context.window = context;
// Execute coolprop.js in our custom context
vm.createContext(context);
vm.runInContext(coolpropJs, context);
// Wait for initialization
function waitForInit(timeout = 5000) {
return new Promise((resolve, reject) => {
const start = Date.now();
const check = () => {
if (context.Module.initialized) {
resolve(context.Module);
} else if (Date.now() - start > timeout) {
reject(new Error('CoolProp initialization timed out'));
} else {
setTimeout(check, 100);
}
};
check();
});
}
module.exports = {
init: () => waitForInit(),
PropsSI: (...args) => {
if (!context.Module.initialized) {
throw new Error('CoolProp not initialized. Call init() first');
}
return context.Module.PropsSI(...args);
}
};

View File

@@ -0,0 +1,419 @@
const coolprop = require('./cp.js');
const customRefs = require('./refData.js');
class CoolPropWrapper {
constructor() {
this.initialized = false;
this.defaultRefrigerant = null;
this.defaultTempUnit = 'K'; // K, C, F
this.defaultPressureUnit = 'Pa' // Pa, kPa, bar, psi
this.customRef = false;
}
// Temperature conversion helpers
_convertTempToK(value, unit = this.defaultTempUnit) {
switch(unit.toUpperCase()) {
case 'K': return value;
case 'C': return value + 273.15;
case 'F': return (value + 459.67) * 5/9;
default: throw new Error('Unsupported temperature unit');
}
}
_convertTempFromK(value, unit = this.defaultTempUnit) {
switch(unit.toUpperCase()) {
case 'K': return value;
case 'C': return value - 273.15;
case 'F': return value * 9/5 - 459.67;
default: throw new Error('Unsupported temperature unit');
}
}
_convertDeltaTempFromK(value, unit = this.defaultTempUnit) {
switch(unit.toUpperCase()) {
case 'K': return value;
case 'C': return value;
case 'F': return (value * 1.8);
default: throw new Error('Unsupported temperature unit');
}
}
// Pressure conversion helpers
_convertPressureToPa(value, unit = this.defaultPressureUnit) {
switch(unit.toUpperCase()) {
case 'PAA': return value; // Absolute Pascal
case 'PAG':
case 'PA': return value + 101325; // Gauge Pascal
case 'KPAA': return value * 1000; // Absolute kiloPascal
case 'KPAG':
case 'KPA': return value * 1000 + 101325; // Gauge kiloPascal
case 'BARA': return value * 100000; // Absolute bar
case 'BARG':
case 'BAR': return value * 100000 + 101325; // Gauge bar
case 'PSIA': return value * 6894.76; // Absolute PSI
case 'PSIG':
case 'PSI': return value * 6894.76 + 101325;// Gauge PSI
default: throw new Error('Unsupported pressure unit');
}
}
_convertPressureFromPa(value, unit = this.defaultPressureUnit) {
switch(unit.toUpperCase()) {
case 'PAA': return value; // Absolute Pascal
case 'PAG':
case 'PA': return value - 101325; // Gauge Pascal
case 'KPAA': return value / 1000; // Absolute kiloPascal
case 'KPAG':
case 'KPA': return (value - 101325) / 1000; // Gauge kiloPascal
case 'BARA': return value / 100000; // Absolute bar
case 'BARG':
case 'BAR': return (value - 101325) / 100000;// Gauge bar
case 'PSIA': return value / 6894.76; // Absolute PSI
case 'PSIG':
case 'PSI': return (value - 101325) / 6894.76;// Gauge PSI
default: throw new Error('Unsupported pressure unit');
}
}
async init(config = {}) {
try {
// If already initialized, only update defaults if provided
if (this.initialized) {
if (config.refrigerant) this.defaultRefrigerant = config.refrigerant;
if (config.tempUnit) {
if (!['K', 'C', 'F'].includes(config.tempUnit.toUpperCase())) {
return { type: 'error', message: 'Invalid temperature unit. Must be K, C, or F' };
}
this.defaultTempUnit = config.tempUnit;
}
if (config.pressureUnit) {
if (!['PA', 'PAA', 'KPA', 'KPAA', 'BAR', 'BARA', 'PSI', 'PSIA'].includes(config.pressureUnit.toUpperCase())) {
return { type: 'error', message: 'Invalid pressure unit. Must be Pa, Paa, kPa, kPaa, bar, bara, psi, or psia' };
}
this.defaultPressureUnit = config.pressureUnit;
}
return { type: 'success', message: 'Default settings updated' };
}
// First time initialization
if (!config.refrigerant) {
throw new Error('Refrigerant must be specified during initialization');
}
// Validate temperature unit if provided
if (config.tempUnit && !['K', 'C', 'F'].includes(config.tempUnit.toUpperCase())) {
throw new Error('Invalid temperature unit. Must be K, C, or F');
}
// Validate pressure unit if provided
if (config.pressureUnit && !['PA', 'PAA', 'KPA', 'KPAA', 'BAR', 'BARA', 'PSI', 'PSIA'].includes(config.pressureUnit.toUpperCase())) {
throw new Error('Invalid pressure unit. Must be Pa, Paa, kPa, kPaa, bar, bara, psi, or psia');
}
await coolprop.init();
this.initialized = true;
this.defaultRefrigerant = config.refrigerant;
this.defaultTempUnit = config.tempUnit || this.defaultTempUnit;
this.defaultPressureUnit = config.pressureUnit || this.defaultPressureUnit;
return { type: 'success', message: 'Initialized successfully' };
} catch (error) {
return { type: 'error', message: error.message };
}
}
async _ensureInit(config = {}) {
// Initialize CoolProp if not already done
if (!this.initialized) {
if (!config.refrigerant && !this.defaultRefrigerant) {
throw new Error('Refrigerant must be specified either during initialization or in the method call');
}
await coolprop.init();
this.initialized = true;
}
// Validate temperature unit if provided
if (config.tempUnit && !['K', 'C', 'F'].includes(config.tempUnit.toUpperCase())) {
throw new Error('Invalid temperature unit. Must be K, C, or F');
}
// Validate pressure unit if provided
if (config.pressureUnit && !['PA', 'PAA', 'PAG', 'KPA', 'KPAA', 'KPAG', 'BAR', 'BARA', 'BARG', 'PSI', 'PSIA', 'PSIG'].includes(config.pressureUnit.toUpperCase())) {
throw new Error('Invalid pressure unit. Must be Pa, Paa, Pag, kPa, kPaa, kPag, bar, bara, barg, psi, psia, or psig');
}
// Validate refrigerant if provided
if (config.refrigerant && typeof config.refrigerant !== 'string') {
throw new Error('Invalid refrigerant type');
}
if (config.refrigerant && Object.keys(customRefs).includes(config.refrigerant)) {
this.customRef = true;
this.defaultRefrigerant = config.refrigerant;
//console.log(`Using custom refrigerant flag for ${this.defaultRefrigerant}`);
}else if(this.customRef && config.refrigerant){
this.customRef = false;
//console.log(`Cleared custom refrigerant flag`);
}
// Update instance variables with new config values if provided
if (config.refrigerant) this.defaultRefrigerant = config.refrigerant;
if (config.tempUnit) this.defaultTempUnit = config.tempUnit.toUpperCase();
if (config.pressureUnit) this.defaultPressureUnit = config.pressureUnit.toUpperCase();
}
async getConfig() {
return {
refrigerant: this.defaultRefrigerant,
tempUnit: this.defaultTempUnit,
pressureUnit: this.defaultPressureUnit
};
}
async setConfig(config) {
await this.init(config);
return {
type: 'success',
message: 'Config updated successfully',
config: await this.getConfig()
};
}
// Helper method for linear interpolation/extrapolation
_interpolateSaturationTemperature(pressurePa, saturationData, pressureType = 'liquid') {
const data = saturationData.sort((a, b) => a[pressureType] - b[pressureType]); // Sort by specified pressure type
// If pressure is below the lowest data point, extrapolate using first two points
if (pressurePa <= data[0][pressureType]) {
if (data.length < 2) return data[0].K;
const p1 = data[0], p2 = data[1];
const slope = (p2.K - p1.K) / (p2[pressureType] - p1[pressureType]);
return p1.K + slope * (pressurePa - p1[pressureType]);
}
// If pressure is above the highest data point, extrapolate using last two points
if (pressurePa >= data[data.length - 1][pressureType]) {
if (data.length < 2) return data[data.length - 1].K;
const p1 = data[data.length - 2], p2 = data[data.length - 1];
const slope = (p2.K - p1.K) / (p2[pressureType] - p1[pressureType]);
return p1.K + slope * (pressurePa - p1[pressureType]);
}
// Find the two adjacent points for interpolation
for (let i = 0; i < data.length - 1; i++) {
if (pressurePa >= data[i][pressureType] && pressurePa <= data[i + 1][pressureType]) {
const p1 = data[i], p2 = data[i + 1];
// Linear interpolation
const slope = (p2.K - p1.K) / (p2[pressureType] - p1[pressureType]);
return p1.K + slope * (pressurePa - p1[pressureType]);
}
}
// Fallback (shouldn't reach here)
return data[0].K;
}
// Helper method for linear interpolation/extrapolation of saturation pressure
_interpolateSaturationPressure(tempK, saturationData, pressureType = 'liquid') {
const data = saturationData.sort((a, b) => a.K - b.K); // Sort by temperature
// If temperature is below the lowest data point, extrapolate using first two points
if (tempK <= data[0].K) {
if (data.length < 2) return data[0][pressureType];
const p1 = data[0], p2 = data[1];
const slope = (p2[pressureType] - p1[pressureType]) / (p2.K - p1.K);
return p1[pressureType] + slope * (tempK - p1.K);
}
// If temperature is above the highest data point, extrapolate using last two points
if (tempK >= data[data.length - 1].K) {
if (data.length < 2) return data[data.length - 1][pressureType];
const p1 = data[data.length - 2], p2 = data[data.length - 1];
const slope = (p2[pressureType] - p1[pressureType]) / (p2.K - p1.K);
return p1[pressureType] + slope * (tempK - p1.K);
}
// Find the two adjacent points for interpolation
for (let i = 0; i < data.length - 1; i++) {
if (tempK >= data[i].K && tempK <= data[i + 1].K) {
const p1 = data[i], p2 = data[i + 1];
// Linear interpolation
const slope = (p2[pressureType] - p1[pressureType]) / (p2.K - p1.K);
return p1[pressureType] + slope * (tempK - p1.K);
}
}
// Fallback (shouldn't reach here)
return data[0][pressureType];
}
async getSaturationTemperature({ pressure, refrigerant = this.defaultRefrigerant, pressureUnit = this.defaultPressureUnit, tempUnit = this.defaultTempUnit }) {
try {
await this._ensureInit({ refrigerant, pressureUnit, tempUnit });
const pressurePa = this._convertPressureToPa(pressure, pressureUnit);
let tempK;
if(this.customRef){
tempK = this._interpolateSaturationTemperature(pressurePa, customRefs[refrigerant].saturation);
}else{
tempK = coolprop.PropsSI('T', 'P', pressurePa, 'Q', 0, this.customRefString || refrigerant);
}
return {
type: 'success',
temperature: this._convertTempFromK(tempK, tempUnit),
refrigerant,
units: {
temperature: tempUnit,
pressure: pressureUnit
}
};
} catch (error) {
return { type: 'error', message: error.message };
}
}
async getSaturationPressure({ temperature, refrigerant = this.defaultRefrigerant, tempUnit = this.defaultTempUnit, pressureUnit = this.defaultPressureUnit }) {
try {
await this._ensureInit({ refrigerant, tempUnit, pressureUnit });
const tempK = this._convertTempToK(temperature, tempUnit);
let pressurePa;
if(this.customRef){
pressurePa = this._interpolateSaturationPressure(tempK, customRefs[refrigerant].saturation);
}else{
pressurePa = coolprop.PropsSI('P', 'T', tempK, 'Q', 0, this.customRefString || refrigerant);
}
return {
type: 'success',
pressure: this._convertPressureFromPa(pressurePa, pressureUnit),
refrigerant,
units: {
temperature: tempUnit,
pressure: pressureUnit
}
};
} catch (error) {
return { type: 'error', message: error.message };
}
}
async calculateSubcooling({ temperature, pressure, refrigerant = this.defaultRefrigerant, tempUnit = this.defaultTempUnit, pressureUnit = this.defaultPressureUnit }) {
try {
await this._ensureInit({ refrigerant, tempUnit, pressureUnit });
const tempK = this._convertTempToK(temperature, tempUnit);
const pressurePa = this._convertPressureToPa(pressure, pressureUnit);
let satTempK;
if(this.customRef){
// Use liquid pressure for subcooling
satTempK = this._interpolateSaturationTemperature(pressurePa, customRefs[refrigerant].saturation, 'liquid');
}else{
satTempK = coolprop.PropsSI('T', 'P', pressurePa, 'Q', 0, this.customRefString || refrigerant);
}
const subcooling = satTempK - tempK;
const result = {
type: 'success',
subcooling: Math.max(0, this._convertDeltaTempFromK(subcooling, tempUnit)), // can't have less than 0 degrees subcooling
saturationTemperature: this._convertTempFromK(satTempK, tempUnit),
refrigerant,
units: {
temperature: tempUnit,
pressure: pressureUnit
}
};
if(result.subcooling == Infinity && result.saturationTemperature == Infinity) {
return { type: 'error', message: 'Subcooling is infinity', note: 'If the pressures are in an expected range that this should work, please check your refrigerant type works in coolprop. "R507" for example is not supported, as it needs to be "R507a"'};
}
return result;
} catch (error) {
return { type: 'error', message: error.message };
}
}
async calculateSuperheat({ temperature, pressure, refrigerant = this.defaultRefrigerant, tempUnit = this.defaultTempUnit, pressureUnit = this.defaultPressureUnit }) {
try {
await this._ensureInit({ refrigerant, tempUnit, pressureUnit });
const tempK = this._convertTempToK(temperature, tempUnit);
const pressurePa = this._convertPressureToPa(pressure, pressureUnit);
//console.log(`In calculateSuperheat, pressurePa: ${pressurePa}, pressure: ${pressure}, pressureUnit: ${pressureUnit}, refrigerant: ${this.customRefString || refrigerant}`);
let satTempK;
if(this.customRef){
// Use vapor pressure for superheat
satTempK = this._interpolateSaturationTemperature(pressurePa, customRefs[refrigerant].saturation, 'vapor');
}else{
satTempK = coolprop.PropsSI('T', 'P', pressurePa, 'Q', 1, this.customRefString || refrigerant);
}
const superheat = tempK - satTempK;
//console.log(`superheat: ${superheat}, calculatedSuperheat: ${this._convertDeltaTempFromK(superheat, tempUnit)}, calculatedSatTempK: ${this._convertTempFromK(satTempK, tempUnit)}, tempK: ${tempK}, tempUnit: ${tempUnit}, pressurePa: ${pressurePa}, pressureUnit: ${pressureUnit}`);
const result = {
type: 'success',
superheat: Math.max(0, this._convertDeltaTempFromK(superheat, tempUnit)), // can't have less than 0 degrees superheat
saturationTemperature: this._convertTempFromK(satTempK, tempUnit),
refrigerant,
units: {
temperature: tempUnit,
pressure: pressureUnit
}
};
if(result.superheat == Infinity && result.saturationTemperature == Infinity) {
return { type: 'error', message: 'Superheat is infinity', note: 'If the pressures are in an expected range that this should work, please check your refrigerant type works in coolprop. "R507" for example is not supported, as it needs to be "R507a"'};
}
return result;
} catch (error) {
return { type: 'error', message: error.message };
}
}
async getProperties({ temperature, pressure, refrigerant = this.defaultRefrigerant, tempUnit = this.defaultTempUnit, pressureUnit = this.defaultPressureUnit }) {
try {
await this._ensureInit({ refrigerant, tempUnit, pressureUnit });
const tempK = this._convertTempToK(temperature, tempUnit);
const pressurePa = this._convertPressureToPa(pressure, pressureUnit);
if(this.customRef){
return { type: 'error', message: 'Custom refrigerants are not supported for getProperties' };
}
const props = {
temperature: this._convertTempFromK(tempK, tempUnit),
pressure: this._convertPressureFromPa(pressurePa, pressureUnit),
density: coolprop.PropsSI('D', 'T', tempK, 'P', pressurePa, this.customRefString || refrigerant),
enthalpy: coolprop.PropsSI('H', 'T', tempK, 'P', pressurePa, this.customRefString || refrigerant),
entropy: coolprop.PropsSI('S', 'T', tempK, 'P', pressurePa, this.customRefString || refrigerant),
quality: coolprop.PropsSI('Q', 'T', tempK, 'P', pressurePa, this.customRefString || refrigerant),
conductivity: coolprop.PropsSI('L', 'T', tempK, 'P', pressurePa, this.customRefString || refrigerant),
viscosity: coolprop.PropsSI('V', 'T', tempK, 'P', pressurePa, this.customRefString || refrigerant),
specificHeat: coolprop.PropsSI('C', 'T', tempK, 'P', pressurePa, this.customRefString || refrigerant)
};
return {
type: 'success',
properties: props,
refrigerant,
units: {
temperature: tempUnit,
pressure: pressureUnit,
density: 'kg/m³',
enthalpy: 'J/kg',
entropy: 'J/kg/K',
quality: 'dimensionless',
conductivity: 'W/m/K',
viscosity: 'Pa·s',
specificHeat: 'J/kg/K'
}
};
} catch (error) {
return { type: 'error', message: error.message };
}
}
// Direct access to CoolProp functions
async getPropsSI() {
if(!this.initialized) {
await coolprop.init();
}
return coolprop.PropsSI;
}
}
module.exports = new CoolPropWrapper();

View File

@@ -0,0 +1,308 @@
module.exports.R448a = {
saturation: [{
//values in kelvin, pascal
"K": 233.15,
"liquid": 135137.24,
"vapor": 101352.93
},
{
"K": 238.71,
"liquid": 173058.40,
"vapor": 131689.86
},
{
"K": 244.26,
"liquid": 218563.80,
"vapor": 168921.55
},
{
"K": 249.82,
"liquid": 273032.38,
"vapor": 214426.94
},
{
"K": 255.37,
"liquid": 337153.62,
"vapor": 268895.52
},
{
"K": 260.93,
"liquid": 412306.47,
"vapor": 333016.76
},
{
"K": 266.48,
"liquid": 499869.88,
"vapor": 408859.09
},
{
"K": 272.04,
"liquid": 599843.86,
"vapor": 496422.50
},
{
"K": 277.59,
"liquid": 714986.30,
"vapor": 598464.91
},
{
"K": 283.15,
"liquid": 845986.68,
"vapor": 714986.30
},
{
"K": 288.71,
"liquid": 990776.58,
"vapor": 845986.68
},
{
"K": 294.26,
"liquid": 1163145.51,
"vapor": 997671.34
},
{
"K": 299.82,
"liquid": 1349303.94,
"vapor": 1170040.26
},
{
"K": 305.37,
"liquid": 1556146.65,
"vapor": 1363093.46
},
{
"K": 310.93,
"liquid": 1783673.64,
"vapor": 1576830.93
},
{
"K": 316.48,
"liquid": 2038779.64,
"vapor": 1818147.42
},
{
"K": 322.04,
"liquid": 2314569.92,
"vapor": 2087042.94
},
{
"K": 327.59,
"liquid": 2617939.23,
"vapor": 2383517.49
},
{
"K": 333.15,
"liquid": 2955782.33,
"vapor": 2714465.83
},
{
"K": 338.71,
"liquid": 3321204.45,
"vapor": 3086782.71
}]
}
module.exports.R448A = module.exports.R448a;
module.exports.R449A = {
saturation: [
{
// values in kelvin, pascal
"K": 233.15,
"liquid": 134447.82,
"vapor": 101352.97
},
{
"K": 235.93,
"liquid": 152374.20,
"vapor": 115121.57
},
{
"K": 238.71,
"liquid": 171679.52,
"vapor": 131689.92
},
{
"K": 241.48,
"liquid": 193052.21,
"vapor": 148949.73
},
{
"K": 244.26,
"liquid": 216503.85,
"vapor": 168255.05
},
{
"K": 247.04,
"liquid": 242702.42,
"vapor": 189627.74
},
{
"K": 249.82,
"liquid": 270979.90,
"vapor": 213768.86
},
{
"K": 252.59,
"liquid": 301336.31,
"vapor": 240051.48
},
{
"K": 255.37,
"liquid": 334440.63,
"vapor": 267609.92
},
{
"K": 258.15,
"liquid": 370292.86,
"vapor": 298655.80
},
{
"K": 260.93,
"liquid": 408892.90,
"vapor": 331760.12
},
{
"K": 263.71,
"liquid": 450240.76,
"vapor": 367612.35
},
{
"K": 266.48,
"liquid": 495036.08,
"vapor": 406831.32
},
{
"K": 269.26,
"liquid": 542579.32,
"vapor": 448868.64
},
{
"K": 272.04,
"liquid": 594279.82,
"vapor": 493663.96
},
{
"K": 274.82,
"liquid": 649728.18,
"vapor": 542579.32
},
{
"K": 277.59,
"liquid": 708053.32,
"vapor": 594969.28
},
{
"K": 280.37,
"liquid": 770873.08,
"vapor": 650767.64
},
{
"K": 283.15,
"liquid": 839126.92,
"vapor": 710801.16
},
{
"K": 285.93,
"liquid": 912814.72,
"vapor": 774989.44
},
{
"K": 288.71,
"liquid": 983940.92,
"vapor": 845977.32
},
{
"K": 291.48,
"liquid": 1066606.52,
"vapor": 914889.32
},
{
"K": 294.26,
"liquid": 1151351.00,
"vapor": 990835.62
},
{
"K": 297.04,
"liquid": 1238843.30,
"vapor": 1073501.22
},
{
"K": 299.82,
"liquid": 1335552.20,
"vapor": 1165089.32
},
{
"K": 302.59,
"liquid": 1432261.10,
"vapor": 1256677.42
},
{
"K": 305.37,
"liquid": 1535864.72,
"vapor": 1357134.12
},
{
"K": 308.15,
"liquid": 1646363.00,
"vapor": 1457590.92
},
{
"K": 310.93,
"liquid": 1763756.02,
"vapor": 1568089.12
},
{
"K": 313.71,
"liquid": 1887043.62,
"vapor": 1678587.32
},
{
"K": 316.48,
"liquid": 2017225.92,
"vapor": 1802217.02
},
{
"K": 319.26,
"liquid": 2147408.22,
"vapor": 1934952.12
},
{
"K": 322.04,
"liquid": 2291329.82,
"vapor": 2072621.52
},
{
"K": 324.82,
"liquid": 2435251.42,
"vapor": 2217185.62
},
{
"K": 327.59,
"liquid": 2592912.32,
"vapor": 2368644.42
},
{
"K": 330.37,
"liquid": 2750573.22,
"vapor": 2526305.32
},
{
"K": 333.15,
"liquid": 2925424.52,
"vapor": 2690860.82
},
{
"K": 335.93,
"liquid": 3100275.92,
"vapor": 2871668.52
},
{
"K": 338.71,
"liquid": 3288922.02,
"vapor": 3059370.92
}
]}
module.exports.R449a = module.exports.R449A;

View File

@@ -0,0 +1,94 @@
const coolprop = require('../src/index.js');
describe('R448a Real Values', () => {
it('should calculate superheat correctly at -40°C saturation', async () => {
const result = await coolprop.calculateSuperheat({
temperature: -35, // 5K above saturation temp of -40°C
pressure: 0, // saturation pressure at -40°C (from chart)
refrigerant: 'R448a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat - 5)).toBeLessThan(0.2); // Should be ~5K superheat
});
it('should calculate superheat correctly at -20°C saturation', async () => {
const result = await coolprop.calculateSuperheat({
temperature: -15, // 5K above saturation temp of -20°C
pressure: 21.0, // saturation pressure at -20°C (from chart)
refrigerant: 'R448a',
tempUnit: 'C',
pressureUnit: 'psig'
});
//console.log(result);
expect(result.type).toBe('success');
expect(Math.abs(result.superheat - 5)).toBeLessThan(0.2); // Should be ~5K superheat
});
it('should calculate subcooling correctly at 30°C saturation', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 25, // 5K below saturation temp of 30°C
pressure: 198.1, // saturation pressure at 30°C (from chart)
refrigerant: 'R448a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling - 5)).toBeLessThan(0.2); // Should be ~5K subcooling
});
it('should calculate subcooling correctly at 40°C saturation', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 35, // 5K below saturation temp of 40°C
pressure: 258.0, // saturation pressure at 40°C (from chart)
refrigerant: 'R448a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling - 5)).toBeLessThan(0.2); // Should be ~5K subcooling
});
it('should calculate zero superheat at saturation point', async () => {
const result = await coolprop.calculateSuperheat({
temperature: 0, // Exact saturation temperature
pressure: 60.1, // Matching saturation pressure from chart
refrigerant: 'R448a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat)).toBeLessThan(0.2); // Should be ~0K superheat
});
it('should calculate zero subcooling at saturation point', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 20, // Exact saturation temperature
pressure: 148.5, // Matching saturation pressure from chart
refrigerant: 'R448a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling)).toBeLessThan(0.2); // Should be ~0K subcooling
});
it('It should also work with R448A (capital A)', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 20, // Exact saturation temperature
pressure: 148.5, // Matching saturation pressure from chart
refrigerant: 'R448A',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling)).toBeLessThan(0.2); // Should be ~0K subcooling
});
});

View File

@@ -0,0 +1,94 @@
const coolprop = require('../src/index.js');
describe('R449a Real Values', () => {
it('should calculate superheat correctly at -40°C saturation', async () => {
const result = await coolprop.calculateSuperheat({
temperature: -35, // 5K above saturation temp of -40°C
pressure: 0, // saturation pressure at -40°C (from chart)
refrigerant: 'R449a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat - 5)).toBeLessThan(0.2); // Should be ~5K superheat
});
it('should calculate superheat correctly at -20°C saturation', async () => {
const result = await coolprop.calculateSuperheat({
temperature: -15, // 5K above saturation temp of -20°C
pressure: 20.96, // saturation pressure at -20°C (from chart)
refrigerant: 'R449a',
tempUnit: 'C',
pressureUnit: 'psig'
});
//console.log(result);
expect(result.type).toBe('success');
expect(Math.abs(result.superheat - 5)).toBeLessThan(0.2); // Should be ~5K superheat
});
it('should calculate subcooling correctly at 30°C saturation', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 25, // 5K below saturation temp of 30°C
pressure: 195, // saturation pressure at 30°C (from chart)
refrigerant: 'R449a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling - 5)).toBeLessThan(0.2); // Should be ~5K subcooling
});
it('should calculate subcooling correctly at 40°C saturation', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 35, // 5K below saturation temp of 40°C
pressure: 254.2, // saturation pressure at 40°C (from chart)
refrigerant: 'R449a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling - 5)).toBeLessThan(0.2); // Should be ~5K subcooling
});
it('should calculate zero superheat at saturation point', async () => {
const result = await coolprop.calculateSuperheat({
temperature: 0, // Exact saturation temperature
pressure: 74.05, // Matching saturation pressure from chart
refrigerant: 'R449a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat)).toBeLessThan(0.2); // Should be ~0K superheat
});
it('should calculate zero subcooling at saturation point', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 20, // Exact saturation temperature
pressure: 146.0, // Matching saturation pressure from chart
refrigerant: 'R449a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling)).toBeLessThan(0.2); // Should be ~0K subcooling
});
it('It should also work with R449A (capital A)', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 20, // Exact saturation temperature
pressure: 146.0, // Matching saturation pressure from chart
refrigerant: 'R449A',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling)).toBeLessThan(0.2); // Should be ~0K subcooling
});
});

View File

@@ -0,0 +1,97 @@
const coolprop = require('../src/index.js');
describe('R507 Real Values', () => {
it('should calculate superheat correctly at -40°C saturation', async () => {
const result = await coolprop.calculateSuperheat({
temperature: -35, // 5K above saturation temp of -40°C
pressure: 5.4, // saturation pressure at -40°C (from chart)
refrigerant: 'R507a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat - 5)).toBeLessThan(0.1); // Should be ~5K superheat
});
it('should calculate superheat correctly at -20°C saturation', async () => {
const result = await coolprop.calculateSuperheat({
temperature: -15, // 5K above saturation temp of -20°C
pressure: 30.9, // saturation pressure at -20°C (from chart)
refrigerant: 'R507a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat - 5)).toBeLessThan(0.1); // Should be ~5K superheat
});
it('should calculate subcooling correctly at 30°C saturation', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 25, // 5K below saturation temp of 30°C
pressure: 196.9, // saturation pressure at 30°C (from chart)
refrigerant: 'R507a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling - 5)).toBeLessThan(0.1); // Should be ~5K subcooling
});
it('should calculate subcooling correctly at 40°C saturation', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 35, // 5K below saturation temp of 40°C
pressure: 256.2, // saturation pressure at 40°C (from chart)
refrigerant: 'R507a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling - 5)).toBeLessThan(0.1); // Should be ~5K subcooling
});
it('should calculate zero superheat at saturation point', async () => {
const result = await coolprop.calculateSuperheat({
temperature: 0, // Exact saturation temperature
pressure: 75.8, // Matching saturation pressure from chart
refrigerant: 'R507a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat)).toBeLessThan(0.1); // Should be ~0K superheat
});
it('should calculate zero subcooling at saturation point', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 20, // Exact saturation temperature
pressure: 148, // Matching saturation pressure from chart
refrigerant: 'R507a',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling)).toBeLessThan(0.1); // Should be ~0K subcooling
});
it('should calculate subcooling correctly at 30°C saturation', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 25, // 5K below saturation temp of 30°C
pressure: 196.9, // saturation pressure at 30°C (from chart)
refrigerant: 'R507',
tempUnit: 'C',
pressureUnit: 'psig'
});
expect(result.type).toBe('error');
expect(result.message).toBe('Subcooling is infinity');
expect(result.note).toBeDefined();
});
});

View File

@@ -0,0 +1,55 @@
const coolprop = require('../src/index.js');
describe('R744 (CO2) Real Values', () => {
it('should calculate superheat correctly at -40°C saturation', async () => {
const result = await coolprop.calculateSuperheat({
temperature: -35, // 5K above saturation temp of -40°C
pressure: 9.03, // saturation pressure at -40°C (from chart)
refrigerant: 'R744',
tempUnit: 'C',
pressureUnit: 'bar'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat - 5)).toBeLessThan(0.1); // Should be ~5K superheat
});
it('should calculate subcooling correctly at 0°C saturation', async () => {
const result = await coolprop.calculateSubcooling({
temperature: -5, // 5K below saturation temp of 0°C
pressure: 33.84, // saturation pressure at 0°C (from chart)
refrigerant: 'R744',
tempUnit: 'C',
pressureUnit: 'bar'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling - 5)).toBeLessThan(0.1); // Should be ~5K subcooling
});
it('should calculate zero superheat at saturation point', async () => {
const result = await coolprop.calculateSuperheat({
temperature: -20, // Exact saturation temperature
pressure: 18.68, // Matching saturation pressure from chart
refrigerant: 'R744',
tempUnit: 'C',
pressureUnit: 'bar'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat)).toBeLessThan(0.1); // Should be ~0K superheat
});
it('should calculate zero subcooling at saturation point', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 10, // Exact saturation temperature
pressure: 44.01, // Matching saturation pressure from chart
refrigerant: 'R744',
tempUnit: 'C',
pressureUnit: 'bar'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling)).toBeLessThan(0.1); // Should be ~0K subcooling
});
});

View File

@@ -0,0 +1,55 @@
const coolprop = require('../src/index.js');
describe('R744 (CO2) Real Values', () => {
it('should calculate superheat correctly at -40°F saturation', async () => {
const result = await coolprop.calculateSuperheat({
temperature: -35, // 5°F above saturation temp of -40°F
pressure: 131, // saturation pressure at -40°F (from chart)
refrigerant: 'R744',
tempUnit: 'F', // Changed to F
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat - 5)).toBeLessThan(0.1); // Should be ~5°F superheat
});
it('should calculate subcooling correctly at 32°F saturation', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 27, // 5°F below saturation temp of 32°F
pressure: 490.8, // saturation pressure at 32°F (from chart)
refrigerant: 'R744',
tempUnit: 'F', // Changed to F
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling - 5)).toBeLessThan(0.1); // Should be ~5°F subcooling
});
it('should calculate zero superheat at saturation point', async () => {
const result = await coolprop.calculateSuperheat({
temperature: 32, // Exact saturation temperature
pressure: 490.8, // Matching saturation pressure from chart
refrigerant: 'R744',
tempUnit: 'F', // Changed to F
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.superheat)).toBeLessThan(0.1); // Should be ~0°F superheat
});
it('should calculate zero subcooling at saturation point', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 32, // Exact saturation temperature
pressure: 490.8, // Matching saturation pressure from chart
refrigerant: 'R744',
tempUnit: 'F', // Changed to F
pressureUnit: 'psig'
});
expect(result.type).toBe('success');
expect(Math.abs(result.subcooling)).toBeLessThan(0.1); // Should be ~0°F subcooling
});
});

View File

@@ -0,0 +1,296 @@
const coolprop = require('../src/index.js');
describe('CoolProp Wrapper', () => {
describe('Initialization', () => {
it('should fail without refrigerant', async () => {
const result = await coolprop.init({});
expect(result.type).toBe('error');
expect(result.message).toContain('Refrigerant must be specified');
});
it('should fail with invalid temperature unit', async () => {
const result = await coolprop.init({ refrigerant: 'R404A', tempUnit: 'X' });
expect(result.type).toBe('error');
expect(result.message).toContain('Invalid temperature unit');
});
it('should fail with invalid pressure unit', async () => {
const result = await coolprop.init({ refrigerant: 'R404A', pressureUnit: 'X' });
expect(result.type).toBe('error');
expect(result.message).toContain('Invalid pressure unit');
});
it('should succeed with valid config', async () => {
const result = await coolprop.init({
refrigerant: 'R404A',
tempUnit: 'C',
pressureUnit: 'bar'
});
console.log(result);
expect(result.type).toBe('success');
});
});
describe('Auto-initialization', () => {
it('should work without explicit init', async () => {
const result = await coolprop.calculateSuperheat({
temperature: 25,
pressure: 10,
refrigerant: 'R404A',
tempUnit: 'C',
pressureUnit: 'bar'
});
expect(result.type).toBe('success');
expect(result.superheat).toBeDefined();
});
});
describe('Unit Conversions', () => {
it('should correctly convert temperature units', async () => {
const resultC = await coolprop.getSaturationTemperature({
pressure: 10,
refrigerant: 'R404A',
pressureUnit: 'bar',
tempUnit: 'C'
});
const resultF = await coolprop.getSaturationTemperature({
pressure: 10,
refrigerant: 'R404A',
pressureUnit: 'bar',
tempUnit: 'F'
});
const resultK = await coolprop.getSaturationTemperature({
pressure: 10,
refrigerant: 'R404A',
pressureUnit: 'bar',
tempUnit: 'K'
});
expect(Math.abs((resultC.temperature * 9/5 + 32) - resultF.temperature)).toBeLessThan(0.01);
expect(Math.abs((resultC.temperature + 273.15) - resultK.temperature)).toBeLessThan(0.01);
});
it('should correctly convert pressure units', async () => {
const resultBar = await coolprop.getSaturationPressure({
temperature: 25,
refrigerant: 'R404A',
tempUnit: 'C',
pressureUnit: 'bar'
});
const resultPsi = await coolprop.getSaturationPressure({
temperature: 25,
refrigerant: 'R404A',
tempUnit: 'C',
pressureUnit: 'psi'
});
expect(Math.abs((resultBar.pressure * 14.5038) - resultPsi.pressure)).toBeLessThan(0.1);
});
});
describe('Refrigerant Calculations', () => {
const refrigerants = ['R404A', 'R134a', 'R507A', 'R744'];
refrigerants.forEach(refrigerant => {
describe(refrigerant, () => {
it('should calculate superheat', async () => {
const result = await coolprop.calculateSuperheat({
temperature: 25,
pressure: 10,
refrigerant,
tempUnit: 'C',
pressureUnit: 'bar'
});
expect(result.type).toBe('success');
expect(result.superheat).toBeDefined();
expect(result.refrigerant).toBe(refrigerant);
expect(result.units).toEqual(expect.objectContaining({
temperature: 'C',
pressure: 'bar'
}));
});
it('should calculate subcooling', async () => {
const result = await coolprop.calculateSubcooling({
temperature: 20,
pressure: 20,
refrigerant,
tempUnit: 'C',
pressureUnit: 'bar'
});
expect(result.type).toBe('success');
expect(result.subcooling).toBeDefined();
expect(result.refrigerant).toBe(refrigerant);
});
it('should get all properties', async () => {
const result = await coolprop.getProperties({
temperature: 25,
pressure: 10,
refrigerant,
tempUnit: 'C',
pressureUnit: 'bar'
});
expect(result.type).toBe('success');
expect(result.properties).toBeDefined();
expect(result.refrigerant).toBe(refrigerant);
// Check all required properties exist
const requiredProps = [
'temperature', 'pressure', 'density', 'enthalpy',
'entropy', 'quality', 'conductivity', 'viscosity', 'specificHeat'
];
requiredProps.forEach(prop => {
expect(result.properties[prop]).toBeDefined();
expect(typeof result.properties[prop]).toBe('number');
});
});
});
});
});
describe('Default Override Behavior', () => {
beforeAll(async () => {
await coolprop.init({
refrigerant: 'R404A',
tempUnit: 'C',
pressureUnit: 'bar'
});
});
it('should use defaults when no overrides provided', async () => {
const result = await coolprop.calculateSuperheat({
temperature: 25,
pressure: 10
});
expect(result.refrigerant).toBe('R404A');
expect(result.units.temperature).toBe('C');
expect(result.units.pressure).toBe('bar');
});
it('should allow refrigerant override', async () => {
const result = await coolprop.calculateSuperheat({
temperature: 25,
pressure: 10,
refrigerant: 'R134a'
});
expect(result.refrigerant).toBe('R134a');
});
it('should allow unit overrides', async () => {
const result = await coolprop.calculateSuperheat({
temperature: 77,
pressure: 145,
tempUnit: 'F',
pressureUnit: 'psi'
});
expect(result.units.temperature).toBe('F');
expect(result.units.pressure).toBe('psi');
});
});
describe('Default Settings Management', () => {
it('should allow updating defaults after initialization', async () => {
// Initial setup
await coolprop.init({
refrigerant: 'R404A',
tempUnit: 'C',
pressureUnit: 'bar'
});
// Update defaults
const updateResult = await coolprop.init({
refrigerant: 'R134a',
tempUnit: 'F',
pressureUnit: 'psi'
});
expect(updateResult.type).toBe('success');
expect(updateResult.message).toBe('Default settings updated');
// Verify new defaults are used
const result = await coolprop.calculateSuperheat({
temperature: 77,
pressure: 145
});
expect(result.refrigerant).toBe('R134a');
expect(result.units.temperature).toBe('F');
expect(result.units.pressure).toBe('psi');
});
it('should update the coolprop instance if refrigerant is changed', async () => {
// Set initial defaults
await coolprop.init({
refrigerant: 'R404A',
tempUnit: 'C',
pressureUnit: 'bar'
});
const config = await coolprop.getConfig();
// First call with overrides
const result1 = await coolprop.calculateSuperheat({
temperature: 25,
pressure: 10,
refrigerant: 'R507A',
tempUnit: 'C',
pressureUnit: 'bar'
});
// Second call using defaults
const result2 = await coolprop.calculateSuperheat({
temperature: 25,
pressure: 10
});
const config2 = await coolprop.getConfig();
expect(config.refrigerant).toBe('R404A');
expect(config2.refrigerant).toBe('R507A');
expect(result1.refrigerant).toBe('R507A');
expect(result2.refrigerant).toBe('R507A');
});
it('should allow partial updates of defaults', async () => {
// Initial setup
await coolprop.init({
refrigerant: 'R404A',
tempUnit: 'C',
pressureUnit: 'bar'
});
// Update only temperature unit
await coolprop.init({
tempUnit: 'F'
});
const result = await coolprop.calculateSuperheat({
temperature: 77,
pressure: 10
});
expect(result.refrigerant).toBe('R404A'); // unchanged
expect(result.units.temperature).toBe('F'); // updated
expect(result.units.pressure).toBe('bar'); // unchanged
});
it('should validate units when updating defaults', async () => {
await coolprop.init({
refrigerant: 'R404A',
tempUnit: 'C',
pressureUnit: 'bar'
});
const result = await coolprop.init({
tempUnit: 'X' // invalid unit
});
expect(result.type).toBe('error');
expect(result.message).toContain('Invalid temperature unit');
});
});
});

View File

@@ -0,0 +1,58 @@
const coolprop = require('../src/index.js');
describe('Pressure Conversion Chain Tests', () => {
test('bar -> pa -> bara -> pa -> bar conversion chain', () => {
const startValue = 2; // 2 bar gauge
const toPa = coolprop._convertPressureToPa(startValue, 'bar');
// console.log('bar to Pa:', toPa);
const toBara = coolprop._convertPressureFromPa(toPa, 'bara');
// console.log('Pa to bara:', toBara);
const backToPa = coolprop._convertPressureToPa(toBara, 'bara');
// console.log('bara to Pa:', backToPa);
const backToBar = coolprop._convertPressureFromPa(backToPa, 'bar');
// console.log('Pa to bar:', backToBar);
expect(Math.round(backToBar * 1000) / 1000).toBe(startValue);
});
test('psi -> pa -> psia -> pa -> psi conversion chain', () => {
const startValue = 30; // 30 psi gauge
const toPa = coolprop._convertPressureToPa(startValue, 'psi');
// console.log('psi to Pa:', toPa);
const toPsia = coolprop._convertPressureFromPa(toPa, 'psia');
// console.log('Pa to psia:', toPsia);
const backToPa = coolprop._convertPressureToPa(toPsia, 'psia');
// console.log('psia to Pa:', backToPa);
const backToPsi = coolprop._convertPressureFromPa(backToPa, 'psi');
// console.log('Pa to psi:', backToPsi);
expect(Math.round(backToPsi * 1000) / 1000).toBe(startValue);
});
test('kpa -> pa -> kpaa -> pa -> kpa conversion chain', () => {
const startValue = 200; // 200 kPa gauge
const toPa = coolprop._convertPressureToPa(startValue, 'kpa');
// console.log('kpa to Pa:', toPa);
const toKpaa = coolprop._convertPressureFromPa(toPa, 'kpaa');
// console.log('Pa to kpaa:', toKpaa);
const backToPa = coolprop._convertPressureToPa(toKpaa, 'kpaa');
// console.log('kpaa to Pa:', backToPa);
const backToKpa = coolprop._convertPressureFromPa(backToPa, 'kpa');
// console.log('Pa to kpa:', backToKpa);
expect(Math.round(backToKpa * 1000) / 1000).toBe(startValue);
});
});

View File

@@ -0,0 +1,50 @@
const coolProp = require('../src/index.js');
describe('PropsSI Direct Access', () => {
let PropsSI;
beforeAll(async () => {
// Get the PropsSI function
PropsSI = await coolProp.getPropsSI();
});
test('should initialize and return PropsSI function', async () => {
expect(typeof PropsSI).toBe('function');
});
test('should calculate saturation temperature of R134a at 1 bar', () => {
const pressure = 100000; // 1 bar in Pa
const temp = PropsSI('T', 'P', pressure, 'Q', 0, 'R134a');
expect(temp).toBeCloseTo(246.79, 1); // ~246.79 K at 1 bar
});
test('should calculate density of R134a at specific conditions', () => {
const temp = 300; // 300 K
const pressure = 100000; // 1 bar in Pa
const density = PropsSI('D', 'T', temp, 'P', pressure, 'R134a');
expect(density).toBeGreaterThan(0)
expect(density).toBeLessThan(Infinity);
});
test('should throw error for invalid refrigerant', () => {
const temp = 300;
const pressure = 100000;
expect(() => {
let result = PropsSI('D', 'T', temp, 'P', pressure, 'INVALID_REFRIGERANT');
if(result == Infinity) {
throw new Error('Infinity due to invalid refrigerant');
}
}).toThrow();
});
test('should throw error for invalid input parameter', () => {
const temp = 300;
const pressure = 100000;
expect(() => {
let result = PropsSI('INVALID_PARAM', 'T', temp, 'P', pressure, 'R134a');
if(result == Infinity) {
throw new Error('Infinity due to invalid input parameter');
}
}).toThrow();
});
});

View File

@@ -0,0 +1,128 @@
const coolprop = require('../src/index.js');
describe('Temperature Conversion Tests', () => {
describe('Regular Temperature Conversions', () => {
const testCases = [
{
startUnit: 'C',
startValue: 25,
expectedK: 298.15,
conversions: {
F: 77,
K: 298.15,
C: 25
}
},
{
startUnit: 'F',
startValue: 77,
expectedK: 298.15,
conversions: {
F: 77,
K: 298.15,
C: 25
}
},
{
startUnit: 'K',
startValue: 298.15,
expectedK: 298.15,
conversions: {
F: 77,
K: 298.15,
C: 25
}
}
];
testCases.forEach(({ startUnit, startValue, expectedK, conversions }) => {
test(`${startValue}${startUnit} conversion chain`, () => {
// First convert to Kelvin
const toK = coolprop._convertTempToK(startValue, startUnit);
expect(Math.round(toK * 100) / 100).toBe(expectedK);
// Then convert from Kelvin to each unit
Object.entries(conversions).forEach(([unit, expected]) => {
const converted = coolprop._convertTempFromK(toK, unit);
expect(Math.round(converted * 100) / 100).toBe(expected);
});
});
});
});
describe('Delta Temperature Conversions', () => {
const testCases = [
{
startValue: 10, // 10K temperature difference
expected: {
K: 10,
C: 10,
F: 18 // 10K = 18°F difference
}
}
];
testCases.forEach(({ startValue, expected }) => {
test(`${startValue}K delta conversion to all units`, () => {
Object.entries(expected).forEach(([unit, expectedValue]) => {
const converted = coolprop._convertDeltaTempFromK(startValue, unit);
expect(Math.round(converted * 100) / 100).toBe(expectedValue);
});
});
});
});
describe('Common Temperature Points', () => {
const commonPoints = [
{
description: 'Water freezing point',
C: 0,
F: 32,
K: 273.15
},
{
description: 'Water boiling point',
C: 100,
F: 212,
K: 373.15
},
{
description: 'Room temperature',
C: 20,
F: 68,
K: 293.15
},
{
description: 'Typical refrigeration evaporator',
C: 5,
F: 41,
K: 278.15
},
{
description: 'Typical refrigeration condenser',
C: 35,
F: 95,
K: 308.15
}
];
commonPoints.forEach(point => {
test(`${point.description} conversions`, () => {
// Test conversion to Kelvin from each unit
const fromC = coolprop._convertTempToK(point.C, 'C');
const fromF = coolprop._convertTempToK(point.F, 'F');
expect(Math.round(fromC * 100) / 100).toBe(point.K);
expect(Math.round(fromF * 100) / 100).toBe(point.K);
// Test conversion from Kelvin to each unit
const toC = coolprop._convertTempFromK(point.K, 'C');
const toF = coolprop._convertTempFromK(point.K, 'F');
expect(Math.round(toC * 100) / 100).toBe(point.C);
expect(Math.round(toF * 100) / 100).toBe(point.F);
});
});
});
});

View File

@@ -68,6 +68,23 @@ class Measurement {
return this.values[this.values.length - 1]; return this.values[this.values.length - 1];
} }
getLaggedValue(lag){
if(this.values.length <= lag) return null;
return this.values[this.values.length - lag];
}
getLaggedSample(lag){
if (lag < 0) throw new Error('lag must be >= 0');
const index = this.values.length - 1 - lag;
if (index < 0) return null;
return {
value: this.values[index],
timestamp: this.timestamps[index],
unit: this.unit,
};
}
getAverage() { getAverage() {
if (this.values.length === 0) return null; if (this.values.length === 0) return null;
const sum = this.values.reduce((acc, val) => acc + val, 0); const sum = this.values.reduce((acc, val) => acc + val, 0);

View File

@@ -94,7 +94,8 @@ class MeasurementContainer {
throw new Error('Variant must be specified before position'); throw new Error('Variant must be specified before position');
} }
this._currentPosition = positionValue;
this._currentPosition = positionValue.toString().toLowerCase();;
return this; return this;
} }
@@ -163,7 +164,7 @@ class MeasurementContainer {
// Emit the exact event your parent expects // Emit the exact event your parent expects
this.emitter.emit(`${this._currentType}.${this._currentVariant}.${this._currentPosition}`, eventData); this.emitter.emit(`${this._currentType}.${this._currentVariant}.${this._currentPosition}`, eventData);
console.log(`Emitted event: ${this._currentType}.${this._currentVariant}.${this._currentPosition}`); //console.log(`Emitted event: ${this._currentType}.${this._currentVariant}.${this._currentPosition}`, eventData);
return this; return this;
} }
@@ -247,35 +248,62 @@ class MeasurementContainer {
return measurement ? measurement.getAllValues() : null; return measurement ? measurement.getAllValues() : null;
} }
getLaggedValue(lag = 1,requestedUnit = null ){
const measurement = this.get();
if (!measurement) return null;
const value = measurement.getLaggedSample(lag);
if (value === null) return null;
// Return as-is if no unit conversion requested
if (!requestedUnit) {
return value;
}
// Convert if needed
if (measurement.unit && requestedUnit !== measurement.unit) {
try {
return convertModule(value).from(measurement.unit).to(requestedUnit);
} catch (error) {
if (this.logger) {
this.logger.error(`Unit conversion failed: ${error.message}`);
}
return value; // Return original value if conversion fails
}
}
return value;
}
// Difference calculations between positions // Difference calculations between positions
difference(requestedUnit = null) { difference({ from = "downstream", to = "upstream", unit: requestedUnit } = {}) {
if (!this._currentType || !this._currentVariant) { if (!this._currentType || !this._currentVariant) {
throw new Error('Type and variant must be specified for difference calculation'); throw new Error("Type and variant must be specified for difference calculation");
} }
const upstream = this.measurements?.[this._currentType]?.[this._currentVariant]?.['upstream'] || null;
const downstream = this.measurements?.[this._currentType]?.[this._currentVariant]?.['downstream'] || null;
if (!upstream || !downstream || upstream.values.length === 0 || downstream.values.length === 0) { const get = pos =>
this.measurements?.[this._currentType]?.[this._currentVariant]?.[pos] || null;
const a = get(from);
const b = get(to);
if (!a || !b || a.values.length === 0 || b.values.length === 0) {
return null; return null;
} }
// Get target unit for conversion const targetUnit = requestedUnit || a.unit || b.unit;
const targetUnit = requestedUnit || upstream.unit || downstream.unit; const aVal = this._convertValueToUnit(a.getCurrentValue(), a.unit, targetUnit);
const bVal = this._convertValueToUnit(b.getCurrentValue(), b.unit, targetUnit);
// Get values in the same unit const aAvg = this._convertValueToUnit(a.getAverage(), a.unit, targetUnit);
const upstreamValue = this._convertValueToUnit(upstream.getCurrentValue(), upstream.unit, targetUnit); const bAvg = this._convertValueToUnit(b.getAverage(), b.unit, targetUnit);
const downstreamValue = this._convertValueToUnit(downstream.getCurrentValue(), downstream.unit, targetUnit);
const upstreamAvg = this._convertValueToUnit(upstream.getAverage(), upstream.unit, targetUnit);
const downstreamAvg = this._convertValueToUnit(downstream.getAverage(), downstream.unit, targetUnit);
return { return {
value: downstreamValue - upstreamValue, value: aVal - bVal,
avgDiff: downstreamAvg - upstreamAvg, avgDiff: aAvg - bAvg,
unit: targetUnit unit: targetUnit,
from,
to,
}; };
} }

View File

@@ -213,6 +213,10 @@ const pressureDiff = basicContainer
console.log(`Pressure difference: ${pressureDiff.value} ${pressureDiff.unit}\n`); console.log(`Pressure difference: ${pressureDiff.value} ${pressureDiff.unit}\n`);
//reversable difference
const deltaP = basicContainer.type("pressure").variant("measured").difference(); // defaults to downstream - upstream
const netFlow = basicContainer.type("flow").variant("measured").difference({ from: "upstream", to: "downstream" });
// ==================================== // ====================================
// ADVANCED STATISTICS & HISTORY // ADVANCED STATISTICS & HISTORY
// ==================================== // ====================================
@@ -248,6 +252,28 @@ const allValues = stats.getAllValues();
console.log(` Samples: ${allValues.values.length}`); console.log(` Samples: ${allValues.values.length}`);
console.log(` History: [${allValues.values.join(', ')}]\n`); console.log(` History: [${allValues.values.join(', ')}]\n`);
console.log('--- Lagged sample comparison ---');
const latest = stats.getCurrentValue(); // existing helper
const prevSample = stats.getLaggedValue(1); // new helper
const prevPrevSample = stats.getLaggedValue(2); // optional
if (prevSample) {
const delta = latest - prevSample.value;
console.log(
`Current vs previous: ${latest} ${statsData.unit} (t=${stats.get().getLatestTimestamp()}) vs ` +
`${prevSample.value} ${prevSample.unit} (t=${prevSample.timestamp})`
);
console.log(`Δ = ${delta.toFixed(2)} ${statsData.unit}`);
}
if (prevPrevSample) {
console.log(
`Previous vs 2-steps-back timestamps: ${new Date(prevSample.timestamp).toISOString()} vs ` +
`${new Date(prevPrevSample.timestamp).toISOString()}`
);
}
// ==================================== // ====================================
// DYNAMIC UNIT MANAGEMENT // DYNAMIC UNIT MANAGEMENT
// ==================================== // ====================================
@@ -299,8 +325,11 @@ basicContainer.getTypes().forEach(type => {
} }
}); });
console.log('\n✅ All examples complete!\n'); console.log('\n✅ All examples complete!\n');
// ==================================== // ====================================
// BEST PRACTICES // BEST PRACTICES
// ==================================== // ====================================